

Research activities of RF based negative ion source in the ASIPP

Yahong XIE, Chundong HU, Jianglong Wei, Yuming Gu, Caichao Jiang, Yongjian Xu, Lizhen Liang, Yuanzhe Zhao, Yuanlai Xie

xieyh@ipp.ac.cn

Neutral beam Injection Division, Institute of Plasma Physics, CAS

The 7th International symposium on Negative Ions, Beams and Sources (NIBS'20)

Outline

- Background
- Introduction of RF source test facility
- Research activities of RF N- beam source
 - RF plasma discharge
 - Negative ion beam extraction
- Summary and future plan

MFE development pathway in CHINA

CRAFT Project

Comprehensive Research fAcility for Fusion Technology (CRAFT)

National big science facility (2019.9-2025.5)

CRAFT NNBI system

> Key technology

- Negative ions generation
- Negative beam acceleration
- HVPS and transmission
- High speed cryopump

Outline

- Background
- Introduction of RF source test facility
- Research activities of RF N- beam source
 - RF plasma discharge
 - Negative ion beam extraction
- Summary and future plan

RF beam source test facility

The matching network on test facility

Outline

- Background
- Introduction of RF source test facility
- Research activities of RF N- beam source
 - RF plasma discharge
 - Negative ion beam extraction
- Summary and future plan

Design of RF plasma source

Item	specifications
faraday shield	ID=200mm height = 140mm thickness = 4 mm
Size of insulator	ID=210mm height = 156mm thickness = 8 mm
Expansion area	Length=650mm, height= 260mm, depth= 240 mm

R&D of RF driver

- Heat loading on FS is around 50% of total
- ☐ FS is very different to manufacture (by vacuum brazing)
- Active cooling FS with three pipes was developed

Single driver ion source

Position of movable probe

Yahong XIE etal. NIBS2020, 1-11 September 2020

Plasma parameters measurement (w/o cusp mag.)

Plasma parameters with space distribution

Yahong

Long pulse operation (47kW@1000s)

70

80

60

Time(s)

Outline

- Background
- Introduction of RF source test facility
- Research activities of RF N- beam source
 - □ RF plasma discharge
 - Negative ion beam extraction
- Summary and future plan

Design of negative ion accelerator

- ▶2 segments, 5×6 beamlets for each, aperture separation 22mm and 20mm
- ► Center of electron suppression magnetic field ~500G
- ► Electron Suppression Magnet: 5mm×5.5mm(cross section), 5mCo, 1 T

Electrode system

Development of negative ion accelerator

Magnetic filter on negative beam source

- \square 4×2 permanent magnets (Sm₂Co₁₇) installed 55mm before PG
- Magnetic intensity is 1T
- \square $\int |B_x| dz$ between 1.2 mTm-1.35 mTm

2D color map of permanent magnet filter

Magnetic filter on negative beam source

- □ The electron temperature decreased from 5.5eV to1 eV with magnetic filter
- ☐ The magnetic filter effects on electron density can be neglected
- ☐ The results were good for the negative beam source

Negative ion extraction exp.

- ☐ Plasma grid current: I_{PG}
- Extraction grid current: I_{EG}
- ☐ Ground grid current: I_{GG}
- ☐ Faraday plate current: I_{FS}

Negative ion extraction W/O Cs

- ☐ The source pressure keeps 0.33 Pa
- Negative ion density realized 10 A/m² (20kW)
- ☐ The ratio of electron to negative ion is around 25

EG and GG current as a function of RF power

Faraday cup current and GG current as a function of RF power

Cs dispenser for negative ion production

- Temperature of plasms chamber was actively controlled around 45 degree
- Temperature of PG was heated by RF plasma between 100 to 180 degree

R&D of Cs dispenser to enhance the H- yield

Cs dispenser installed on the beam source

Diagnosis of negative ion

Picture of CRDS system

E-W14

Time [s]

2.5E+16 2E+16 2E+16 1E+16 5E+15 0 0 50 100 150 200 250 300 Shot NO

Measurement of H- density with CRDS

OES measurement points

Intensity of 852nm line of Cs

Day by day conditioning

Conditioning results of negative ion extraction

 $j_{\rm ex}(A/m^2)$ $V_{ex}(kV)$

Extracted ion density vary with RF power

Extracted ion density with different extraction voltage

Long pulse negative ion extraction

Ten holes were left because of weak pump speed

Outline

- Background
- Introduction of RF source test facility
- Research activities of RF N- beam source
 - RF plasma discharge
 - Negative ion beam extraction
- Summary and future plan

Summary

- □ High power negative ion based RF ion source was designed in ASIPP for CRAFT NNBI system
- A RF ion source test facility was developed for the performance testing at the first phase
- A negative source with singer driver and three layers grids was developed
- Long pulse plasma discharge of 1000s was achieved on with RF power of 47 kW (60s with 80 kW)
- The negative ion production and extraction was tested with Cs feeding
- Long pulse of 105 s beam extraction with density of 153 A/m² was achieved (the ratio of electron to ion was 0.3)

RF beam source test facility upgrade (Oct. 2020)

- □ RF P.S.: 100kW @ 1MHz
- Extractor P.S.: -16kV@20A
- □ Acc. P.S.: -50kV@50A (Oct. 2020)
- □ TC/WFC
- Langmuir Probe
- Microwave interferometer
- OES & CRDS

Future plan

- □ Characteristic study of negative ion production and extraction (Cs feeding, PG temperature control, beam optics ...)
- Long pulse negative ion production and extraction with large size
- Increase source size (two drives, large extraction grid)
- □ ...

ITER-like Faraday shield

Manufactured large size PG, EG and GG

