Beam Extraction and Optics of the 200keV Beam Accelerator for Neutral Beam Injection in China

F. Song, D. Chen
Huazhong University of Science and Technology
Wuhan, 430074

G. Zou, G. Lei
Southwestern Institute of Physics
Chengdu, 610000

The authors would like to thank the National Key R&D Program of China and the National Natural Science Foundation of China for their support.

Sept. 2020, Online
I. Introduction

CFETR N-NBI:
China Fusion Engineering Test Reactor
Negative-ion-based Neutral Beam Injection

CFETR NNBI source
single-stage beam accelerator

H-, 5A, 200 keV
I. Introduction

CFETR N-NBI:
China Fusion Engineering Test Reactor Negative-ion-based Neutral Beam Injection

CFETR NNBI source
single-stage beam accelerator

1\(^{\text{st}}\) phase 2\(^{\text{nd}}\) phase

Single driver, 5A, 200keV
I. Introduction

• **Aim in the 1st phase**
 H- beam 5A, energy 200keV, pulse duration 1000s.

• **Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of plasma pulse</td>
<td>1000 s</td>
</tr>
<tr>
<td>Beam energy</td>
<td>200 keV</td>
</tr>
<tr>
<td>Current density</td>
<td>200-300 A/m2</td>
</tr>
<tr>
<td>Extraction area</td>
<td>0.32 m \times 1.6 m</td>
</tr>
<tr>
<td>Extraction voltage</td>
<td>\sim10 kV</td>
</tr>
</tbody>
</table>

272 apertures on each grid, extraction aperture diameter 7 mm. Molybdenum for PG and copper for the others.
I. Introduction

Estimation of Beam Optics.
(Factors in beam extraction and transport.)

In this work:

Single beamlet model, electromagnetic effects.

1. Meniscus, Current and Voltage
 Meniscus calculated with a simplified method in Comsol Multiphysics,
sensitivity to current and extraction voltage.
 Influence on beam divergence.

2. Deflection Magnets
 Effect for co-extracted electrons deflection.
 Influence on ion beam.
II. Calculation Model

- **Numerical tool**
 Comsol Multiphysics \((\text{multi-physics, modifiable, no meniscus on its own})\)

- **Simplified method for meniscus**
 (boundary between plasma and beam)

Quasi-neutral charge density in the plasma

Input: geometry, particle property, current density, and grid voltage.

Iteration of electric field calculation and particle tracing.
II. Calculation Model

- Results agreement

The single beamlet case in Ref.[1]:

- dot: data from [1], SLACCAD
- line: calculated by Comsol with meniscus

(Both programs with axisymmetric model.)

Current limitation

II. Calculation Model

Multi-physics factors in beam transport
(electromagnetics, particle tracing, collisions, mechanics, thermodynamics…)

Modules modifiable
(meniscus, …)

Comsol is adopted.

- **Step 1**
 - Axisymmetric model
 - electric factors
 - general rules

- **Step 2**
 - 3D model
 - Electromagnetic field

Emission state, Voltage conditions…
III.A. Meniscus, Current and Voltage

- Electrostatic lens effect

Voltage shapes the beam for fixed distance between grids.

Beam trajectory at $J_H=200\text{A/m}^2$, $V_{EG}=7.8\text{kV}$, $V_{PG}=0$, $V_{GG}=200\text{kV}$
III.A. Meniscus, Current and Voltage

- **Meniscus variation**

 200A/m^2, $V_{\text{EG}}=6 \text{kV}$, over-focus at exit

 $V_{\text{EG}}=7.8 \text{kV}$, ideal convergence

 $V_{\text{EG}}=10 \text{kV}$, defocus at exit

 - nearly flat
 - slightly concave
 - over concave
III.A. Meniscus, Current and Voltage

- Perverance match

- The optimal perveance is about $5 \times 10^{-8} \text{A} \cdot \text{V}^{-3/2}$.

- Modify the extraction voltage to adjust beam angle to demand.

\[
\theta_{\text{rms}} = \sqrt{\frac{1}{N} \sum (\theta_i - \bar{\theta})^2}
\]

\(\theta_i\) - angle of \(i\)th particle; \(\bar{\theta}\) - average angle of all particles; \(N\) - particle total number
III.B. Magnetic Field

- 3D Model

Emission:

Conditions:
- $J_{H_e} = J_e = 200\text{A/m}^2$
- Voltage condition at beam’s minimum angle
 $(V_{PG}=0, V_{EG}=7.8\text{kV}, V_{GG}=200\text{kV})$

Emission:
- Semi-ellipsoid surface
- Particles emitted normal to surface
III.B. Magnetic Field

- 3D Model

Emitter surface

\[r = r_{PG} \]

\[d = d_{\text{meniscus}} \]
III.B. Magnetic Field

- Deflection of co-extracted electrons
 Magnet size: 5mm × 6mm × 30mm
 Effective when magnet remanence $B_r > 0.5T$
 (Corresponding to $B_y > 0.03T$
 in the extraction gap.)

Banana-like profile on EG surface

$B_r=0.5T$, max load: 18.2MW/m2
III.B. Magnetic Field

- H^- beam offset

B_y along the beam path
III.B. Magnetic Field

- H⁻ beam offset
 Offset within 1mm
 Angle up to 10mrad

\[\int B_y \, dz \]

The largest offset.
III.B. Magnetic Field

- H^- beam offset

Blue balls represent H^- ions intercepted with grids.

$B_r = 0.5 \text{T}$

Loss: $1 \sim 6\%$.
IV. Conclusion

1. Meniscus is calculated self-consistently with Comsol in the axisymmetric case.

2. Electromagnetic effects on single beamlet optic of the CFETR NNBI 200keV accelerator is investigated.
 - The system follows Child’s Law to a first approximation. 7.8kV is capable for extraction of 200A/m² current density, beam divergence angle 5mrad within limit.
 - Deflection magnets are effective for $B_y > 0.03T$ in the gap. For less electrons running into neighbor aperture, $B_y < 0.07T$ is also recommended.
 - With no compensation, beam offset less than 1mm. Divergence up to 10mrad. Ions lost on grid in 1~6%.

Future plans:
 - Further development for 3D meniscus and more accurate plasma model
 - Influence of beam halo and stray particles
 - Compensation for beam offset

Email: songf_hust@hust.edu.cn