

Negative Ion Beam Acceleration and Transport in HV injector prototype

Ivanov A.A., <u>Sotnikov O.Z</u>, Sanin A.L., Belchenko Yu.I., Abdrashitov G.F., Belavsky A.V., Gorbovsky A.I., Deichuli P.P., Dranichnikov A.N., Kondakov A.A., Shikhovtsev I.V.

Budker Institute of Nuclear Physics

- BINP N-NBI design
- HV injector prototype
- Beam transport through LEBT and HEBT with AV off
- First results of beam transport and acceleration

BINP project of HV negative ion based Injector*

*A. Ivanov, G. Abdrashitov, V. Anashin, Yu. Belchenko, A. V. Burdakov et al. AIP Conf. Proc. 1515, 197 (2013)

Principal :

- Beam acceleration after purifying from the co-streaming fluxes of primary and secondary particles (gas, fast neutrals, electrons, cesium, light)
- Single-aperture accelerator with intense pumping. Secondary particles production and stresses of the accelerator could be considerably reduced

Under development:

- RF SPS with 1.5 A and 9 A, 120 kV H- beam production
- HV injector prototype
- Plasma target for HV beam neutralization
- Photon target with nonresonant photon accumulation

HV Injector Prototype Test Stand

First studies (2020):

- Beam transport to acceleration tube entrance
- Beam transport through HEBT with acceleration voltage off
- Beam acceleration and transport through HEBT

3D drawing of Injector Prototype

HV Injector Prototype in the Hall

HV platform top view

HV platform side view

Components of Injector Prototype

Ion Source

Magnets in the LEBT tank

Acceleration Tube

Quadrupoles

Beam calorimeter

Primary line rectifier 3kV, 3 MW

Rectifier 0-330 kV

Rectifier 330-660 kV

Beam Transport through LEBT *

*O. Sotnikov, Yu. Belchenko, P. Deichuli, A. Ivanov, and A. Sanin. AIP Conf. Proc. 2052, 070003 (2018)

Beam distribution obtained at 3.5 m from the source by magnetic beam scan across calorimeter

Calculated trajectories (COMSOL) show ~60% beam transmission through 24x24 cm LEBT exit aperture for beam with initial divergence \pm 40 mRad

It confirms the obtained beam divergence $\Delta X'^{30}$ mrad, $\Delta Y'^{45}$ mrad

Beam Transport through HEBT

Beam position in the LEBT magnet aperture

Connection of acceleration tube electrodes and Scheme of intercepted current measurements in the 100 kV acceleration test

Beam Transport through HEBT (with no HV at acceleration tube)

Calculated trajectories for beam with divergence ± 20 mRad are shown (COMSOL)

NIBS"20 Online, 9 September 2020

Beam Transport through HEBT (with no HV at acceleration tube)

Beam Focusing by Quadrupoles

Quadrupoles decrease beam size at calorimeter. Beam power, incident to BC increases ~10 times

Beam Transport through HEBT (with no HV at acceleration tube)

BC temperature ΔT and Beam current I_b dependencies vs Extraction voltage U_{ex} U_{tot}=84 kV, Q_{mag} on

Beam transport is maximal at $U_{ex} = 7-8 \text{ kV}$

Temperature growth ΔT of BC lamellas vsBeamlet divergeExtraction voltage U_{ex} Beamlet diverge U_{tot} =84 kV, Q_{mag} onfor I_b =30 ΔT is larger at U_{ex} =7-8 kVX' = 25 mrad, Y'=

Beamlet divergence vs U_{ex} (IBSIMU) for I_b =30 mA, U_B =85 kV X' = 25 mrad, Y'= 28 mrad at U_{ex} =8 kV

The maximal beam transport was recorded at the optimal U_{ex} ~7-8 kV for 85 kV, 0.6 A beam It is consistent with the simulations by IBSIMU

NIBS"20 Online, 9 September 2020

Beam acceleration study

Oscillogramme of beam current from the source I_b and of accelerated current I_{HV}

Beam profile at 10 m with Quadrupoles ON & OFF

Beam compression is seen by glow in the area between the calorimeter plates taken by bottom CCD

Beam compression by Quadrupoles Calculated beam profile (Comsol) Ub= 85 kv, U_{HV} =100 kV

- ~ 37 % of beam were accelerated to energy 83+100 = 183 kV
- ~ 3 mA current (1.3%) was measured in the 1st acceleration electrode circuit
- Accelerated Beam current I_{HV} increases to the pulse end (due to Cs redistribution on PG ?)
- Quadrupoles switching on diminishes the beam size at BC plane

Beam transport vs source parameters

Acceleration with HV voltage U_{HV} 36 kV Extraction voltage change

Acceleration with HV voltage U_{HV} 79 kV PG bias change

Beam transport is optimal for U_{ex} = 7 kV-8 kV (at U_{HV} 36 kV)

Optimal beam size FWHM at calorimeter is 170 mm

 I_{PG} influences beam current I_b and correspondingly the transported beam. Optimal beam size FWHM at calorimeter is 140 mm

Transported beam size and value is mainly determined by entrance aperture of HV tube. Beam focusing by Electrostatic lens of the accelerator first gap is more effective for the higher U_{HV} applied

Beam transport efficiency I_{HV} / I_{b}

	Ion Source		HV acceleration tube			At Calorimeter			
	I _b , A	U _B , kV	I _{HV} , A	U _{HV,} kV	I _{HV} /I _b ,%	$\bar{I}_{BC} = P_{BC} / U_{tot}$	Ī _{вс} / I _b , %	P _{BC} , kw	FWHMy, cm
Comsol 40 mRad	-	85	-	100	39	-	39	-	9
Active Cs	0.64	83	0.24	100	37	not measured		11	
Passivated Cs	0.46	75.7	0.12	76	26	0.1 A	21	13.8	10

Beam Transport through LEBT and HEBT is consistent with the simulations by Comsol Beam transport is worser for the source with passivated Cs

Beam transport growth with optimization of source and accelerator parameters

First experiments on beam acceleration were produced with decreased beam current 0.6 A and energy 85 keV The acceleration voltage of 100 keV was limited by HV PS (covid). It resulted in the reduced value of beam transport 37%

The transport value up 90% could be obtained with beam energy increase to the designed 120 keV and by entrance diaphragm enlargement to Ø 240 mm

Beam divergence decrease down to 26 mrad with beam energy growth (U_{ex}=10 kV, I_{beamlet}=50 mA, IBSIMU)

Beam transport through HEBT I_{HV}/I_{b} for entrance diaphragm Ø 190 and 240 mm and various beam divergence (Comsol)

Summary of first experimental and goal values

	First experiments	Goal
I _b , А	0.65	1.5
U _B , kV	85	120
Divergence , mrad	40	26
Diaphragm Ø, cm	20	24
Beam transport, %	37.5	90

100% transmission of H⁻ beam, entering the accelerated tube could be provided (COMSOL)

- First measurements of Negative ion beam transport through the HEBT were produced.
- Up to 37% of 0.65 A, energy 85 kV H- beam were accelerated to energy 182 keV and transported trough HEBT to distance 10 m from the source
- The data obtained are in good agreement with calculation by COMSOL and IBSIMU
- The transport efficiency of about 90 % could be provided for H- beam with energy 120 keV to acceleration tube entrance Ø24 cm.
- 100% transport of H⁻ beam could be provided for beam entering the accelerator

Thank you for attention!