

Operational Experience with the **ELENA Ion Source**

D. Gamba*, D. Aguglia, B. Lefort, C. Machado, F. Wenander, CERN, Geneva 1217, Switzerland

R. Gebel, Forschungszentrum Jülich GmbH, IKP-4, 52425 Jülich, Germany

The Extra Low ENergy Antiproton facility

Aim: to extend the antimatter factory at CERN

- Further decelerate the 5.3 MeV antiprotons coming from the AD down to 100 keV
- Increase experiment trapping efficiency up to two order of magnitude Timeline:
- Approved at CERN in June 2011
- First H- beam circulating in the ring by end 2016
- First pbar beam with parameters relatively close to nominal by end 2018
- Installation of electrostatic transfer lines toward experiments 2019-2020
- Commissioning of transfer lines with H- 2020-2021
- pbar delivered to experiments by mid 2021

ELENA Ion Source: Parameters / Wish list

Aim: to mimic antiproton beam for ring and transfer line commissioning

- H- and p beam pulses: ~100 uA amplitude, ~1 us length, 100 keV energy
- Note: only <650 ns-long pulses injectable in ELENA ring by injection kicker
- r.m.s. physical emittance of ~1 mm mrad
- Good shot-to-shot stability and repeatability:
- order of a few % intensity and emittance
- order of 0.1% or better energy stability
- Low vacuum contamination

Based on a refurbished and upgraded multi-cusp volume source previously used at the COSY/Jülich injector cyclotron

Intra-pulse and shot-to-shot H- intensity stability issue

- Original setup had poor instrumentation also due to delays on SEM profile monitors, only now almost operational
- The original Pearson BCT was not sensitive enough to perform single shot acquisition due to background noise
- BPMs in the ELENA ring first revealed this instability, then confirmed with the ring longitudinal pickup (LPU) and finally also on the source **BCT thanks to ultra-low-noise amplifier** developed at CERN

- Multi-parameter scan revealed that H- pulse is more stable for very low arc voltages (at the limit of the plasma switching off), but it also provides **lower average intensity**
- During first tests, a small increase on gas pressure did not seem beneficial
 - No higher pressure were attempted not to risk ring vacuum contamination

 Comparison between extracted protons and H- with the same plasma parameters **points toward** an instability in the H- formation process

- Considerably higher gas pressures also seems to cure the instability while preserving average intensity
 - Remarkably high stability of the first 400 ns peak

HV Insulation Transformer Breakdowns

- Designed to run at ±100 kV DC, with 400 Hz power supplies
 - No commercial solution for a reliable insulation transformer (several breakdowns)
- In-house driven development may have found a solution (oil insulation, larger tank)
 - Also updated the control system to work in pulsed mode (no issues experienced)

Recent Improvements and Future Plans

- Added and improved several instruments for online diagnostics
- A more sensitive (x100) BCT after the source with the possibility to hold a screen for direct beam spot characterisation and optimisation
- Online and high bandwidth measurement of e-current dumped on the puller
- Faraday cage HV measurement to allow for HV pulsed operation
- Vacuum leak test of the source was performed showing no major issues
 - Estimated plasma chamber pressure: 4e-5/1.2e-3 mbar for 0/1 sccm gas
- Beam quality and stability in the ring with new settings to be evaluated
- Plans to investigate if H- production can be stabilised in other ways:
 - Could a different filament shape be beneficial?
- Is something wrong with the **magnetic configuration** of the magnetic filter?