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Abstract. A charge-exchange target for neutralizing a negative ion beam with energies up to 10 MeV and higher requires 
the development of a highly efficient plasma trap which allows to form and confine plasma with a linear density up to 
1017 cm-2 and higher. The magnetic systems in which the condition of magnetohydrodynamic stability of the plasma is 

satisfied are most interesting to obtain a high-density plasma. The electron confinement efficiency in a magnetic trap with 
a quasi-spherically symmetric multicusp magnetic field geometry with a "minimum B" at the center of the system, in 
which all cusps are point-type cusps is studied using numerical methods. The results of numerical experiments are 
compared with a collisionless model of particle motion in a trap. 

INTRODUCTION  

   To obtain beams of high-energy neutral hydrogen atoms, beams of accelerated negative ions must be passed 
through a neutralizing target. 

   For an energy range of 30-50 MeV or lower (for example, at an energy of 30 MeV as the first stripping target 

for the implementation of multi-turn charge-exchange injection from the linear accelerator LU-30 to the proton 

synchrotron U-1.5) the use of foil targets is associated with technological difficulties in manufacturing thin foils and 

operations of moving foils in the accelerator beam. 

   In addition, foil targets have a common disadvantage, caused by the destruction of targets at high beam 

currents, which reduces the stability of neutralization and leads to loss of accelerator operation time for replacement 

of targets. 

   There is not such disadvantage in gas and plasma charge-exchange targets, which have no limitation relative to 

the integral flow of ions through the target in the pulsed mode of operation. 

   The advantages of plasma charge-exchange targets are higher yield of neutral atoms in comparison with a gas 

target [1] as well as the possibility of reducing the influence of the working target on the vacuum conditions in the 
channel of the negative ion accelerator by confining the plasma ions and electrons by the magnetic field of the trap. 

   The generation and confinement of target plasma for this range of ion energies requires the development of 

highly efficient trap that allows obtaining plasma with a linear density of up to 1021 m-2 and higher, while 

simultaneously meeting the condition of minimizing the number of plasma particles flowing into the accelerator 

channel. 

   To obtain high-density plasma, magnetic systems in which the condition of magnetohydrodynamic stability of 

the plasma is fulfilled are most interesting. In addition, the trap should be characterized by a sufficiently high 

confinement time of charged particles, which should be comparable to the duration of the pulse of the ion beam 

from the accelerator.   

   Recently developed target plasma traps [2, 3] use axisymmetric multicusp magnetic systems that represent a 

sequence of ring cusps of the magnetic field. The escape of plasma particles from them occurs through a set of 
annular magnetic field cusps and end holes, designed to pass an ion beam. The plasma flow through the end holes in 

this geometry leads to a significant additional load on the vacuum system of the negative ion accelerator. 



   In order to reduce the gas load, a quasi-spherically symmetric multicusp geometry of a magnetic trap in which 

all cusps are only point – type cusps [4], and the axis of the beam passing through the neutralizer does not coincide 

with any of the cusp axes can be used. This mutual arrangement of axes does not allow the electrons and plasma 

ions, leaving the trap mainly through the magnetic field cusps, to enter the accelerator transport line, and thus 

minimizes the impact of the charge-exchange target on the vacuum conditions in the accelerator. In this case, the 

magnetic field of the trap, which confines the target plasma with electron and ion energies of 10 eV scale, has a 
negligible effect on the trajectories of the ion beam with energies greater than 10 MeV. 

   Previously, it was shown experimentally that high-density plasma can be obtained in such traps, in paper [5] 

plasma with an electron density of up to 9×1021 m-3 was obtained in a quasi-spherically symmetric multicusp trap 

with a system size of about 0.2 m and a pulse duration of about 10-5 s. 

   To examine the possibility of using a quasi-spherically symmetric multicusp magnetic system as  target plasma 

trap for a negative ion beam neutralizer, it is necessary to investigate the dependences of electron confinement 

efficiency on the magnitude of magnetic field induction and electron energy by numerical methods, and on the basis 

of these dependences to develop recommendations for choosing the operating parameters of the trap.  

THE GEOMETRY OF THE SYSTEM AND THE COLLISIONLESS MODEL 

CONFINEMENT OF ELECTRONS 

  In numerical modeling we consider a quasi-spherically symmetric multicusp magnetic field, created by current 

coils, located on the faces of the cube and switched on in such a way that the same poles of the magnetic field each 

of these coils are directed to the center of the device. 

The number of cusps in such a system, equal to the sum of the number of vertices and the number of faces, for a 
cube is 14. Six cusps lie on the axes passing through the center of the cube and the centers of its faces (the centers of 

the coils), eight cusps lie on the axes passing through the center of the cube and its vertices. 

It is assumed that the axis of the beam of negative ions can pass through the middle of the opposite edges of the 

cube, and the deviation of ions in magnetic fields can be ignored. 

The geometry of the main elements of the trap considered in the work is shown in Fig. 1. 

 

 

 

FIGURE 1. The basic elements of a quasi-spherically symmetric multicusp magnetic trap. 

 



In the paper [4], the confinement time of an electron τc in a trap with a quasi-spherically symmetric multicusp 

geometry is estimated by the value 

 

                       𝜏𝑐  = 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 × 𝑀∗ =
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𝑣
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were 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 2𝑅
𝑣⁄  - free transit time of an electron through the system, R – radius of system, 𝑀∗ =

𝐵0
𝐵𝑚𝑖𝑛

⁄   - 

mirror ratio for a point cusp. Here B0 is the maximum value of the magnetic field induction on the cusp axis, Bmin  

is the value of the magnetic field induction at the point, where the adiabatic invariant of motion for the electron 
begins to be conserved. 

To find the value Bmin, it is assumed that at this point the Larmor radius of the electron is approximately equal 

to the scale of the change in the magnitude of the magnetic field induction 

                              𝐿 ≡ 𝐵
|∇B|⁄ ≈ 𝑟𝐿 ,                                                                        (2) 

 

where rL is the Larmor radius of the electron. 

In the case of a quasi-spherically symmetric magnetic field, the magnetic field induction value can be 

represented as 𝐵 = 𝐵0(𝑟
𝑅⁄ )

𝑛
, where the index n depends on the geometry of the system.  

By equating L=rL=mv⁄qB, we can find the value Bmin, starting from which the electron movement can be 

considered adiabatic 
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and the value of the mirror ratio 
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here q is the electron charge and 𝑚𝑣 = (2𝑚𝐸)
1

2⁄  is replaced . 

The electron confinement time according to the formula (1) is equal 
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NUMERICAL MODELING 

To verify the dependences of the confinement time of sample particles in this trap on the magnetic field 

induction and electron energy, resulting from the relation (4) and mentioned above, numerical experiments on the 
confinement of electrons in a multicusp trap with a quasi-spherically symmetric magnetic field geometry were 

performed. Numerical experiments were performed using the COMSOL 5.2 software package [6], which allows 

simulating the 3-dimensional geometry of magnetic fields and electrons motion. 

The magnetic field in the model system is created by six identical current coils located on the faces of a cube 

with edge length of 10 cm. The center of the magnetic system is located at a point with coordinates (0,0,0). The 

centers of the inner ends of the coils have coordinates (5,0,0), (-5,0,0), (0,5,0), (0,-5,0), (0,0,5), (0,0,-5) cm. The 

coils have an outer radius of 5 cm, an inner radius of 3 cm, and a length of 2 cm. The number of turns in each coil 

was 80 turns. The current value varied from 62.5 to 500 A. The magnetic field induction B0 at these values varied 

from 0.0635 T to 0.508 T. 

The distribution of magnetic field induction, calculated for the current value in coils 125 A in the X=0 plane is 

shown in Fig. 2. The distribution of the magnetic induction value along one of the coordinate axes is shown in Fig.3. 
To compare the results of numerical experiments with the theoretical dependence (formula 4), it was necessary 

to determine the index of power “n” of the values of the magnetic field induction on the axis of the system. To do 

this, a power function was found that approximates the values of magnetic induction along one of the axes (for 

example, the Z axis). 



 

 

Fig. 2. Distribution of magnetic field induction for the current value in coils 125 A (10 kA * turns) in the plane X=0. Two current 
coils out of six are marked. 

 

 
 

Fig. 3. Distribution of the magnetic induction value along the Z axis (X=0, Y=0). For reference, the position of two current coils 
on the Z axis is indicated. 
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The values of magnetic induction were approximated by a power function for Z values in the range Z= 0-4 cm. 

As a result of this approximation, the value of the index n≈5/2 was obtained. 

Accordingly, formula (4) takes the form 

             𝜏𝑐  = 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 × 𝑀∗ ≈ 1.4 × 10−2 × 𝑅
12

7⁄ × 𝐸−6
7⁄ × 𝐵0

5
7⁄
                     (5) 

 

where R is expressed in m, E in eV, and B0 in T. 

Electron emission was modeled from a disk-shaped surface with a radius of 1 cm, located inside a magnetic 

system with the coordinates of the disk center (0,0,0) cm. Electrons were emitted from the disk surface into a 

hemisphere. 

The particle counter registered electrons that reached the edges of a cube with an edge length of 14 cm centered 

at a point (0,0,0), completely covering the magnetic system. 

In each numerical experiment, 100 electrons were simulated. An example of calculating trajectories for the 

electron energy of 10 eV at the value B0 =0.127 T (at 10 kA·turns) is shown in Fig. 4. 

From this drawing, it can be seen that the electrons leave the system through cusps whose axes pass through the 

centers of the faces or vertices of the cube. 

The electron confinement time τc was taken as the time, during which half of the initial number of emitted 

electrons flew out to the particle counter. 

At the value B0=0.127 T, numerical experiments were performed with the energy of emitted electrons 1.4; 3; 5; 

7; 10; 12; 20; 50 eV. 

At an electron energy of 10 eV, numerical experiments at the values of currents in coils 62.5 A, 100 A, 125 A, 

187.5 A, 250 A, 312.5 A, 500 A were performed. At these values of currents, the value of induction B0 was 0.0635 
T, 0.102 T, 0.127 T, 0.19 T, 0.254 T, 0.317 T, and 0.508 T, respectively. 

 

 
 

Fig. 4. Trajectories of electrons with an energy of 10 eV at the value B0=0.127 T (10 kA*turns), calculated for the time interval 

2.5•10-6 s. 

 



CORRECTION OF THE COLLISIONLESS MODEL CONFINEMENT OF 

ELECTRONS 

As a result of simulations, a significant difference between the values of the confined time τc obtained in 

numerical experiments and calculated in accordance with the formula (5) was found. 

To explain these discrepancies, it was assumed that the value R (the size of the system) in the formula (1) should 

be replaced by the value rr, where rr is the distance from the center to the point, where the particle is reflected from 

the magnetic field mirror.  

The magnetic field induction at the turning point Br when the adiabatic motion condition is fulfilled, is 

determined by relation 
𝐵𝑟(𝑟𝑟)

𝐵𝑚𝑖𝑛

=
𝐸

𝐸⊥

 

where Bmin is the magnitude of magnetic field induction at the point at which begins to satisfy the condition of 

conservation of adiabatic invariant of motion for an electron (2), E - full kinetic energy of the electron, E⊥ is the 
kinetic energy of the transverse motion of the electron at the point in which begins to satisfy the condition of 

conservation of adiabatic invariant of motion for the electron in accordance with the formula (2). 

Using the found value Bmin from formula (3), the value rr is found and substituted for R in formula (4) to 

calculate τc. Thus, instead of formula (4), we get the value for τc  
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At B< Bmin (electron movement is free), we can consider 〈𝑣𝑥
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        𝜏𝑐 ≈ 6 × 10−4 × 𝑅
10

7⁄ × 𝐵0

3
7⁄

× 𝐸−5
7⁄                    (6) 

 

 
 

(a) (b) 

Fig.5. The dependences of the confinement  time τc on the electron energy (a), and magnetic field induction in cusp B0, (b), 

calculated using the formula (5), calculated using the formula (6)  and the points, obtained from numerical experiments. 
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Figure 5 shows the dependences of the confinement time τc on the electron energy and magnetic field induction 

in cusp B0, calculated using the formula (5), calculated using the formula (6) and the points, obtained from 

numerical experiments. 

As can be seen from the graphs, formula (6), which takes into account the dependence of the reflection point 

position on the electron energy, corresponds much better to the results of numerical experiments. 

 DISCUSSION 

The results of numerical experiments for the confinement time of electrons in a trap with a quasi-spherically 

symmetric multicusp geometry of the magnetic field allow us to conclude that the updated formula for the 

confinement time (6) corresponds fairly well to the results of numerical experiments. 

In addition, the confinement time value obtained from formula (6) agrees well enough with the experimental 

result [5] under the assumption of the average energy of plasma electrons E≈5eV. 
Based on this, formula (6) can be used for scaling parameters when designing a target plasma trap. 

For example, to obtain the confinement time τc ≈ 30 µs (which corresponds to the duration of the negative ion 

beam for injection into the proton synchrotron U-1.5), assuming an average plasma electron energy of about 5 eV, 

based on the formula (6), it is necessary to obtain a parameter 𝑅
10

7⁄ 𝐵0

3
7⁄
 of about 0.16. 

The corresponding dependence the radius of the system on the magnetic field induction is shown in Fig. 6. 

 

 

 

 

Fig.  6. The dependence of the radius R (solid line) and the energy deposited to create the plasma W (dotted line), on the magnetic 

field B0 to ensure the confinement  time τc ≈ 30 µs and the thickness of the target 1021  m-2 . 

 
To achieve the maximum yield of neutral atoms at a beam energy of 30 MeV, the thickness of the plasma target 

must be 𝑛𝑒𝑙 = 𝑛𝑒2√2R≈ 1021  m-2, i.e. the electron density is 𝑛𝑒 ≈ 3.5 ∙ 1020

𝑅⁄  m-2. 

Assuming the energy price of the ion of the created plasma ω is about 150 eV (which is close to the values 

obtained in the experiment [5]), the energy deposited to create the plasma should be the value 

 𝑊 = 𝜔 × 𝑛𝑒 × 4
3⁄ 𝜋𝑅3 ≈ 3,5 ∙ 104 × 𝑅2  [J] 
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Figure 6 shows the dependences of the radius of the system R and the energy deposited to create the plasma W, 

depending on the magnitude of the magnetic field in the cusp of the system while providing a confinement time of 

 τc ≈ 30 µs and the thickness of the target 1021  m-2. 

Based on these data, it seems optimal to choose the value of the magnetic field in the cusp in the range of  

0.5 to 1 T, while the radius of the system lies in the range of 0.28 to 0.34 m, and the energy required to create 
plasma lies in the range of 2.6 to 4 kJ. 

CONCLUSION 

The representation of electron motion in the collisionless approximation in the form of reflections from 

individual mirrors and free flights through the central region of the magnetic field with loss of adiabaticity, 

expressed as the ratio (6), taking into account the dependence of the reflection point position on the electron energy, 

is quite well consistent with the results of numerical modeling. 

The values of the magnetic field induction, the system size, and the energy consumed, which are obtained in this 
approximation, are considered acceptable and can be used for development a plasma target of a beam neutralizer 

with an energy of 30 MeV and duration of 30 µs for the implementation of multi-turn charge-exchange injection 

from a linear accelerator LU-30 to a proton synchrotron   U-1.5. 
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