Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development

<u>V. Kubarev</u>^{1,2}, A. Bragin¹, G. Sozinov¹, E. Chesnokov³, P. Koshlyakov³

¹ Budker Institute of Nuclear Physics, Novosibirsk, Russia, ² Novosibirsk State University, Novosibirsk, Russia, ³ Institute of Chamical Kinetics and Combustion, Novosibirsk

³ Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia

Outline

• Introduction:

- motivation of ultrafast single-shot spectroscopy
- key elements of the spectroscopy
- Free induction decay as basic of the spectroscopy:
 - exotic forms of FID signal

• Different types of the spectroscopy:

- Simple analytical spectroscopy a priory known spectra
- Common spectroscopy a priory unknown spectra
- Spectroscopy in magnetic field

Motivation:

Ultrafast real-time spectroscopy is necessary in investigation of unrepeatable or single-pulse processes where classical well known methods spectroscopy based on sampling technology can't be applied (loss information because of averaging).

Key elements:

- Powerful THz pulse source with qualitative beam (linear polarized gauss beams) THz NovoFEL
- Ultrafast detector special Schottky diodes
- Ultrafast direct oscilloscope LeCroy 30 GHz (300 k\$)

Novosibirsk terahertz free electron laser (THz NovoFEL)

Accelerator hall

User's hall

Radiation parameters of THz NovoFEL:

 $\lambda = 90 - 240 \ \mu\text{m}, \quad P_{\text{average}} \le 500 \ \text{W}, \quad P_{\text{pulse}} \le 0.9 \ \text{MW}, \quad (\Delta \lambda / \lambda)_{\text{min}} = 2 \cdot 10^{-3}, \quad f \le 22.4 \ \text{MHz}$ Routine regime of THz NovoFEL: $f = 5.6 \ \text{MHz}$

Ultra-fast THz Schottky diode detector and oscilloscopes

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP, Novosibirsk, Russia

900

800

Scheme of free induction decay radiation (FID) of molecules

Molecule in ground state

Chesnokov E.N., Kubarev V.V., Koshlyakov P.V., and Kulipanov G.N. "Direct observation of the terahertz optical free induction decay of molecular rotation absorption lines in the sub-nanosecond time scale", Appl Phys Lett 101 (2012) 131109-(1-4).

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP, Novosibirsk, Russia SR-2016

Theoretical model of the free induction decay

Basis: Lorentz dispersion theory of gases and Fourier transform:

$$n(\omega) = n_r(\omega) - in_i(\omega) = 1 + \sum_m A_m \frac{(\omega_m - \omega)\gamma_m - i\gamma_m^2}{(\omega_m - \omega)^2 + \gamma_m^2}$$
$$\alpha(\omega) = \frac{\omega n_i}{c} = \frac{\omega}{c} \sum_m A_m \frac{\gamma_m^2}{(\omega_m - \omega)^2 + \gamma_m^2}$$

$$\Delta k(\omega) = \frac{\omega}{c} (n_r - 1) = \frac{\omega}{c} \sum_m A_m \frac{(\omega_m - \omega)\gamma_m}{(\omega_m - \omega)^2 + \gamma_m^2}$$
$$E(\omega) = E_0 \cdot \exp\left[-\frac{(\omega - \omega_0)^2 \tau^2}{8}\right]$$

$$\tilde{E}(\omega) = E(\omega) \cdot \exp\left[-\alpha(\omega)L\right] \cdot \exp\left[i\Delta k(\omega)L\right]$$

$$E(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(\omega) \cdot e^{-\alpha(\omega)L + i\Delta k(\omega)L} \cdot e^{-i\omega t} d\omega$$

Free induction decay of rotational transitions in molecules

Experimental setup:

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development"

Very long free induction decay of HBr molecules

Commensurate frequencies and simple analytical spectroscopy

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development"

FID power (a.u.)

BINP, Novosibirsk, Russia SR-2016

Giant light speed reduction in high-dispersion gas medium

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP, Novo

Scheme of the ultrafast time-domain spectrometer

$$E_x(t) = E(t)\cos\varphi(t) \sim \frac{P_1^{(0)}(t) - P_2^{(\pi)}(t)}{\sqrt{P_{ref}(t)}};$$

$$E_y(t) = E(t)\sin\varphi(t) \sim \frac{P_3^{(\pi/2)}(t) - P_4^{(3\pi/4)}(t)}{\sqrt{P_{ref}(t)}}.$$

$$E_x(t) = E(t)\cos\varphi(t) \sim \sqrt{P_{1,2}(t)} - \sqrt{P_{ref}(t)};$$
$$E_y(t) = E(t)\sin\varphi(t) \sim \sqrt{P_{3,4}(t)} - \sqrt{P_{ref}(t)}.$$

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP, Novosibirsk, Russia SR-2016

Ultrafast time-domain spectrometer (UTDS)

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP, Novosibirsk, Russia SR-2016

Experimental spectra and spectral resolution

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP, Novosibirsk, Russia SR-2016

Modification of the ultrafast time-domain spectrometer for one-pulse diagnostics of NovoFEL radiation

Single-pulse spectroscopy of NovoFEL radiation

V.V.Kubarev et al. "Single-pulse high-resolution spectroscopy on NovoFEL: methods, applications and development" BINP,

Non-Faraday rotation of polarization

Features of the non-Faraday rotation of coherent FID radiation :

- large-scale effect
- rotation angle is time function

Applications:

- high resolution molecular spectroscopy (H = 30-70 kGs, superconducting solenoid)
- ultrafast high-sensitive spectroscopy of short-lived chemical radicals

Chesnokov E.N., Kubarev V.V., Koshlyakov P.V., Getmanov Ya.V., Shevchenko O.A. "*Non-Faraday rotation of the free induction decay in gaseous NO*", Chemical Physics Letters 636 (2015).

NO₂ FID in magnetic fields. Sensitive spectroscopy

Ultrafast spectroscopy in strong magnetic field

Liquid-free superconducting 6 T solenoid

Poster Session: **"Superconducting solenoid for superfast THz spectroscopy"** *A. Bragin, S. Khruschev, V. Kubarev, N. Mezentsev, V. Shkaruba, G. Sozinov, V. Tsukanov*

Thank you for attention !