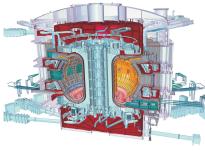
Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 beamline 8


 <u>Arakcheev A.S.</u>^{1,2,3}, Ancharov A.I.⁴, Aulchenko V.M.¹, Bugaev S.V.¹, Burdakov A.V.^{1,3}, Chernyakin A.D.¹, Evdokov O.V.⁴, Kasatov A.A.¹, Kosov A.V.¹, Piminov P.A.¹, Polosatkin S.V.^{1,3}, Popov V.A.^{1,2}, Sharafutdinov M.R.^{1,4}, Shekhtman L.I.¹, Shmakov A.N.⁵, Shoshin A.A.^{1,2}, Skovorodin D.I.¹, Tolochko B.P.^{1,4}, Vasilyev A.A.¹, Vyacheslavov L.N.^{1,2}, Zhulanov V.V.¹

¹ Budker Institute of Nuclear Physics SB RAS
 ² Novosibirsk State University
 ³ Novosibirsk State Technical University
 ⁴ Institute of Solid State Chemistry and Mechanochemistry SB RAS
 ⁵ Boreskov Institute of Catalysis SB RAS

Synchrotron and Free electron laser Radiation: generation and application (SFR-2016), 06.07.2016

Motivation

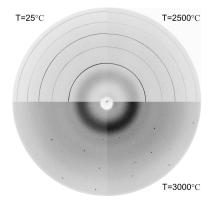
Fusion reactor

ITER drawing

- Plasma volume: 837m³.
- Fusion power: ~ 500MW.
- Plasma pulse time: ~ 3000s.
- First plasma data: 2025.
- Strong erosion of the first wall and divertor plates under powerful plasma flow.

Conditions at the first wall

- Ion flow: 10^{24} ion/m²s,
- Fusion neutron flow: 10¹³ neutron/m²s,
- Thermal loads:
 - Permanent: $40 60 \text{MW/m}^2$,
 - Edge localized mods (ELM): ~ 10 MJ/m² during 0.1 1ms,
 - Thermal quench: $\sim 150 \text{MJ/m}^2$ during 1-5 ms,
 - Runaway electrons: $\sim 30 \text{MJ/m}^2$.

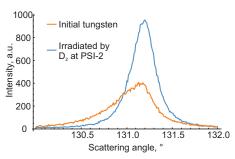

Material erosion and degradation

- Sputtering:
 - Physical sputtering,
 - Chemical sputtering.
- Evaporation,
- Surface and structure modifications (including DPA and recrystallization),
- Impurities retention (including α-particles):
 - Bubble growth,
 - Blistering,
 - Flaking,
 - "Fuzz" growth.
- Brittle destruction:
 - Cracking,
 - Dust particles formation and ejection.
- Melting and flowing away,
- Boiling and splashing.

The most promising materials: W, C, Be, Li.

Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 b - Overview of ex-situ studies

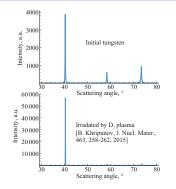
Recrystallization



Diffraction on tungsten wire at station "Diffractometry in hard X-rays"

- The growth of the material grains significantly spoils the material properties.
- 2D detector was used to measure the average grain size.
- Tungsten-molybdenum composite material for the recrystallisation preventing was tested.
- Current status: measurements are completed, data analysis is in progress.

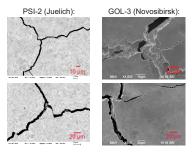
Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 b — Overview of ex-situ studies


Dissolved impurities

Diffraction peaks measured at station "Precision diffractometry and anomalous scattering"

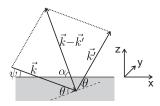
- The dissolved in metals impurities could lead to embrittlement and several specific types of erosion.
- The change of the diffraction peaks at irradiated tungsten was detected.
- Current status: much more experiments and interpretations should be done to understand something.

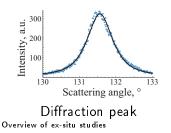
Modification of material structure


Diffraction peaks measured at station "Precision diffractometry and anomalous scattering"

- The strong change of the diffraction intensity and the ratio of the different peaks intensity are measured.
- The orientation of the irradiated surface layer could significantly change the material properties.
- Possible explanation: the columnar structure of molten and crystallized tungsten.

Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 b — Overview of ex-situ studies


Residual stresses and deformations


Cracks on the tungsten after pulsed heat loads

- The periodical pulsed ejections of the plasma to divertor plates are expected during the standard operation regime.
- The cracks causes the overheating, dust particle formation, intensify material retention, etc.
- The pulsed heat loads are reason of the tungsten cracking.
- The mechanical stress causing the cracking appears due to plastic deformation of the material.

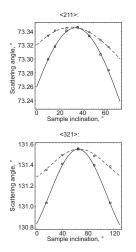
Residual stresses and deformations

Diffraction scheme

- The variation of the sample orientation changes the SR scattering angle due to residual deformation.
- Geometry: $n_x = \cos \alpha \cos \phi = \sin(\psi - \theta) \cos \phi,$

$$n_y = \cos \alpha \sin \phi = \sin(\psi - \theta) \sin \phi,$$

$$n_z = \sin \alpha = \cos(\psi - \theta).$$


Effect:

$$\frac{1}{\sin \theta} = \frac{2(d_0 + \delta d)}{n\lambda} = \frac{2d_0}{n\lambda}(1 - u_{xx}\sin^2(\psi - \theta)\cos^2\phi - u_{yy}\sin^2(\psi - \theta)\sin^2\phi - u_{zz}\cos^2(\psi - \theta) - 2u_{xy}\sin^2(\psi - \theta)\cos\phi\sin\phi - 2u_{xz}\sin(\psi - \theta)\cos(\psi - \theta)\cos\phi - 2u_{yz}\sin(\psi - \theta)\cos(\psi - \theta)\sin\phi)$$

11/43

Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 be — Overview of ex-situ studies

Residual stresses and deformations

 The variation of the sample orientation changes the SR scattering angle due to residual deformation.

Geometry:

$$n_x = \cos \alpha \cos \phi = \sin(\psi - \theta) \cos \phi, n_y = \cos \alpha \sin \phi = \sin(\psi - \theta) \sin \phi, n_z = \sin \alpha = \cos(\psi - \theta).$$

Effect:

$$\frac{1}{\sin \theta} = \frac{2(d_0 + \delta d)}{n\lambda} = \frac{2d_0}{n\lambda}(1 - u_{xx}\sin^2(\psi - \theta)\cos^2\phi - u_{yy}\sin^2(\psi - \theta)\sin^2\phi - u_{zz}\cos^2(\psi - \theta) - 2u_{xy}\sin^2(\psi - \theta)\cos\phi\sin\phi - 2u_{xz}\sin(\psi - \theta)\cos(\psi - \theta)\cos\phi - 2u_{yz}\sin(\psi - \theta)\cos(\psi - \theta)\sin\phi)$$

Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 b — Overview of ex-situ studies

Residual stresses and deformations

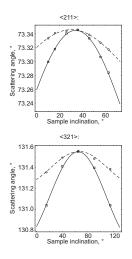


Table: Components of the deformation and stress tensors.

	<211>	<321>
U _{xx}	$2.22 \cdot 10^{-3}$	$2.44 \cdot 10^{-3}$
<i>u_{yy}</i>	$0.2 \cdot 10^{-3}$	$0.22 \cdot 10^{-3}$
Uzz	$-0.94 \cdot 10^{-3}$	$-1.04 \cdot 10^{-3}$
U _{xz}	$0.13 \cdot 10^{-3}$	$0.05 \cdot 10^{-3}$
U _{yz}	$0.13 \cdot 10^{-3}$	$-0.02 \cdot 10^{-3}$
σ_{xx} , MPa	1010	1115
σ_{yy} , MPa	364	403
σ_{xz} , MPa	42	15
σ_{yz} , MPa	40	5

Axis x is the rolling direction.

Status of dynamic diagnostics of plasma material interaction based on synchrotron radiation scattering at the VEPP-4 be — Overview of ex-situ studies

Residual stresses and deformations

In the case of thin heated area there are simple expressions for elastic stresses and deformations:

$$u_x^e = u_y^e = 0,$$

$$u_{zz}^e = \frac{1 - \sigma}{1 + \sigma} \alpha \left(T(z) - T_0 \right),$$

$$\sigma_{zz}^e = \sigma_{xy}^e = \sigma_{xz}^e = \sigma_{yz}^e = 0,$$

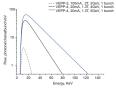
$$\sigma_{xx}^e = \sigma_{yy}^e = -\frac{\alpha E(T(z) - T_0)}{(1 - \sigma)},$$

where \vec{u}^e is the elastic displacements, σ^e_{ij} is the stress tensor, α is the linear thermal extension coefficient, E is the Young's modulus, σ is the Poisson's ratio, T is the temperature., T_0 is the initial temperature. Axis z is perpendicular to the surface, x and y are parallel to the surface.

In-situ experiments

In-situ experiments

Fast processes during plasma irradiation:

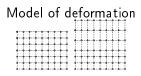

- Deformation during pulsed heat load,
- Recrystallization during pulsed heat load,
- Hydrogen and helium retention and diffusion.

Why did we choose deformation during pulsed heat load for first experiments?

- The measured residual effects,
- Well-understood theoretical description,
- Easy experimental simulation.

Initial conditions

SR sources VEPP-3 and VEPP-4



SR spectrum

1D X-ray detector

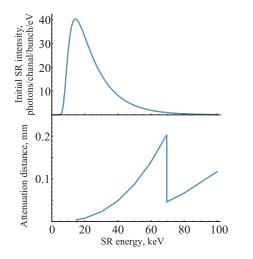
Channel width: $100 \mu m$

The deformation of crystal structure

Pulsed heat load simulation

Laser:

- Energy: 1J,
- Duration: 140µs,
- Wavelength: 1064nm.

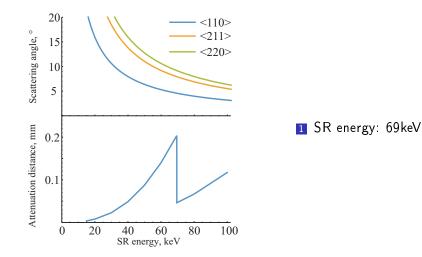

Requirements to the measurements

- Dynamical measurements during pulsed heating,
- Measurements inside material,
- Spacial resolution inside material.

In-situ experiments

— Scheme of experiment

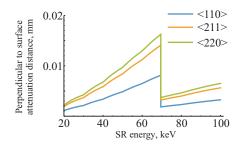
Restrictions to scheme of experiment



SR energy: 69keV

└─ In-situ experiments

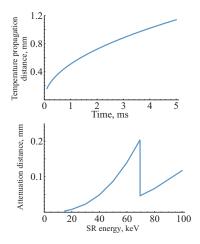
— Scheme of experiment


Restrictions to scheme of experiment

In-situ experiments

— Scheme of experiment

Restrictions to scheme of experiment



SR energy: 69keV
 Laue diffraction

In-situ experiments

— Scheme of experiment

Restrictions to scheme of experiment

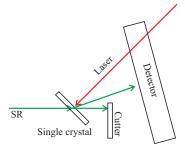
- SR energy: 69keV
- 2 Laue diffraction
- 3 Single crystal

└─ In-situ experiments

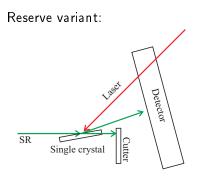
— Scheme of experiment

Restrictions to scheme of experiment

Channel width of the 1D detector: $100\mu m$. Typical shift at the parallel scattering: $10\mu m$.


- 1 SR energy: 69keV
- 2 Laue diffraction
- 3 Single crystal
- Diverging diffracted
 SR
- The effect causing the divergence of the diffracted SR is necessary for spatial resolution!

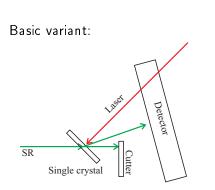
└─ In-situ experiments


└─ Scheme of experiment

Scheme of experiment

Basic variant:

- The deep penetration into material.
- Spatial resolution.
- Thin samples.

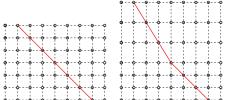

- Single crystal surface.
- Only surface measurements.

In situ experiments

In-situ experiments

└─ Scheme of experiment

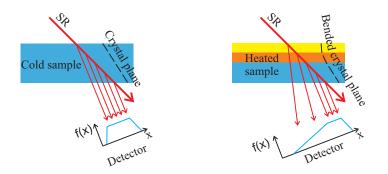
Scheme of experiment



└─Scheme of experiment

"Diverging" effect

Rotation of crystal planes at the heating of the surface layer:


 Compression or expansion of the surface layer result in rotation of the "reflecting" crystal plane.

• $\delta 2\theta \sim \sin(2\alpha)$

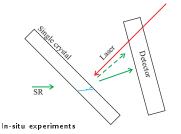
The variation of the scattering angle changes the energy of the diffracted SR. It makes possible to use the sharp change of the intensity near K-egde.

└─Scheme of experiment

"Diverging" effect

The distribution of the deformations can be calculated using the shape of the diffraction peak.

In-situ experiments

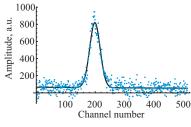

└─ In-situ experiments

└─ Scheme of experiment

What did we expect?

Experiment parameters:

- SR cross-section: $2mm \times 2mm$.
- Laser diameter: 1mm.
- Laser energy: 1J.
- Laser duration: $140 \mu s$.
- Temporal resolution: 20µs.
- Single crystal thickness: $250 \mu m$.
- Distance to detector: 300mm.
- Geometry:

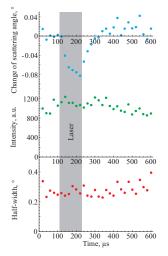


Consequences:

- Temperature propagation distance during irradiation: 200μm.
- Heating up to 500°C.
- Expected effect: $\delta 2\theta = \frac{1+\sigma}{4} \alpha (T - T_0) \approx 0.7 \text{ mrad} \approx 0.04^{\circ}.$
- Detector channel width: 1channel = $100 \mu m \approx 0.3 m rad \approx 0.02^{\circ}$.
- The method of the taking into account plastic deformation is under discussion.

Results

First results



Frame obtained during $20\mu s$.

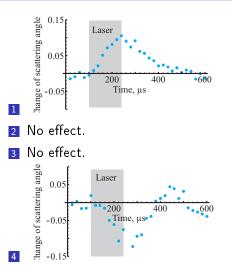
- Frames number: 30.
- Channel number: 512.
- Frame duration: from 25ns to 200µs.

Results

First results

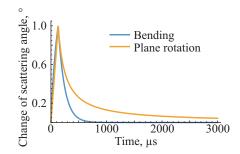
- The scattering angle changes during laser heating and quickly returns back.
- The intensity of the scattered SR and the width of the diffraction peak do not change significantly.

Results


Bending of crystal

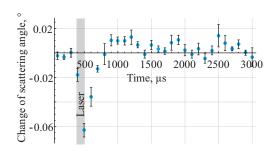
Results

Bending of crystal


Bending of crystal

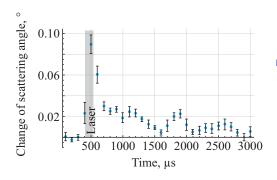
- The bending is result of the small thickness of the sample.
- The bending does not correspond to real situation at the first wall in fusion reactor.
- The thicker samples will be used at next experiments.
- We tried to prove the effect of the crystal plane rotation.

└─ Results


Crystal plane rotation

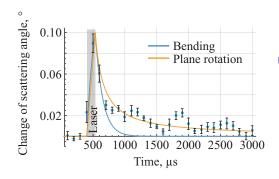
- The direction of the bending could be changes, while the direction of the crystal plane rotation always is positive.
- The bending is proportional to temperature gradient, while the crystal plane rotation is proportional to the temperature.

Results


Crystal plane rotation

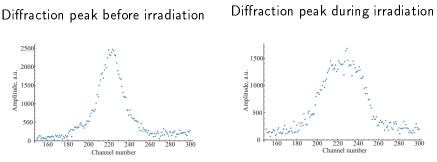
 The reverse of the scattering angle change was measured.

Results


Crystal plane rotation

 The SR beam cross-section was decreased to be smaller than laser cross-section.

Results


Crystal plane rotation

 The rotation of the crystal plane fits experimental results better than bending.

└─ Results

Diffraction peak shape

The diffraction peak shape processing is in progress.

In situ experiments

Conclusions

Conclusions

Facility

Operable:

- Goniometers.
- Gas 1D X-ray detector .
- 1J laser.

Under construction:

- Silicon 1D X-ray detector.
- 100J laser.
- Pirometer.
- Vacuum vessel.

Theory and mathematical processing

Done:

Proved rotation of crystal plane during pulsed heating

In progress:

 Analysis of diffraction peak shape to calculate stress and deformation distributions

Main result

The fast *in-situ* X-ray diffractometry of solid is demonstrated.

Thank you for attention