

Overview of the accelerator development for light source in NSRRC

Gwo-Huei Luo On behalf of Accelerator Div.

July 3-8, 2016 SFR-2016 Novosibirsk, Russia

Contents

• Overview of 3rd Generation Light Source

• Taiwan Light Source

- Layout and milestone
- Operation statistics
- Application of low energy Linac

• Taiwan Photon Source

- The design and layout
- Commissioning of accelerators
- Future Plan

3rd Generation Light Sources around the World

3rd Generation Light Sources in Operation (1)

Light Source	Energy (GeV)	Circumference (m)	Emittance (nm.rad)	Current (mA)	Straight Section	Status
1. ALS	1.9	196.8	6.3	500	12×6.7m	Operation (1993)
2. ESRF	6.0	844.4	3.7	200	32×6.3m	Operation (1993)
3. TLS	1.5	120	25	360	6×6m	Operation (1993)
4. ELETTRA	2.0/2.4	259	7	300	12×6.1m	Operation (1994)
5. PLS/PLS-II	3.0	280.56	5.8	400	12×6.8m	Operation (1995)
6. APS	7.0	1104	3.0	100	40×6.7m	Operation (1996)
7. SPring-8	8.0	1436	2.8	100	44×6.6m, 4×30m	Operation (1997)
8. LNLS	1.37	93.2	70	250	6×3m	Operation (1997)
9. MAX-II	1.5	90	9.0	200	10×3.2m	Operation (1997)
10. BESSY-II	1.7	240	6.1	200	8×5.7m, 8×4.9m	Operation (1999)
11. Siberia-II	2.5	124	65	200	12×3m	Operation (1999)
12. NewSUBARU	1.5	118.7	38	500	2×14m, 4×4m	Operation (2000)
13. SLS	2.4-2.7	288	5	400	3×11.7m, 3×7m, 6 ×4m	Operation (2001)

3rd Generation Light Sources in Operation (2)

Light Source	Energy (GeV)	Circumference (m)	Emittance (nm.rad)	Current (mA)	Straight Section	Status
14. ANKA	2.5	110.4	50	200	4×5.6m, 4×2.2m	Operation (2002)
15. CLS	2.9	170.88	18.1	500	12×5.2m	Operation (2003)
16. SPEAR-3	3.0	234	12	500	2×7.6m,4×4.8m, 12×3.1m	Operation (2004)
17. SAGA-LS	1.4	75.6	7.5	300	8×2.93m	Operation (2005)
18. ASP	3.0	216	7-16	200	14×5.4m	Operation (2007)
19. DIAMOND	3.0	561.6	2.7	300	6×8m, 18×5m	Operation (2007)
20. SOLEIL	2.75	354.1	3.74	500	4×12m, 12×7m, 8×3.8m	Operation (2007)
21. SSRF	3.5	432	3.9	300	4×12m, 16×6.5 m	Operation (2009)
22. PETRA-III	6.0	2304	1.0	100	1×20m, 8×5m	Operation (2009)
23. ALBA	3.0	268.8	4.5	400	4×8m, 12×4.2m, 8×2.6m	Operation (2010)
24. NSLS-II	3.0	792	2.1	500	15×9.3m, 15×6.6m	Operation (2016) 5

New 3rd Generation Light Sources in Commissioning, Construction and Plan

Light Source	Energy (GeV)	Circumference (m)	Emittance (nm.rad)	Current (mA)	Straight Section	Status
25. TPS	3.0	518.4	1.6	500	6×12m, 18×7m	Operation (2016)
26. MAX IV	3.0	528	0.32	500	19×4.6m, 40×1.3m	Operation (2016)
27. Solaris (Poland)	1.5	96	6	500	12*3.5m	Commi.&Oper.
28. Indus-2 (?)	2.5	172.5	58	300	8×4.5m	Commi.&Oper.
29. SESAME	2.5	133.12	26	400	8×4.44m, 8×2.38m	Construction
30. Sirius	3.0	518	0.28	500	10×7m, 10×6m	Construction
31. CANDLE	3.0	216	8.4	350	16×4.8m	Planned
32. ILSF (IPAC14)	3.0	528	0.417	400	20×5.11m	Planned
33. SLiT-J (SRI 2012)	3.0	~300	1.8	300	12×4m	Planned
34. BAPS	6.0	~1295	~0.06	200	48*6m	Planned

SR circumference and beam emittance

TPS is designed to produce electron beams with emphasis on small emittance and great brilliance, stability and reliability.

Taiwan Light Source

TLS accelerator layout and key milestones

- The 1st 3rd G light source in Asia (1993)
- The 2nd LS using SRF cavity (2005)
- The 3rd LS full time top-up injection (2005)
- The most densely-packed SR ring with the highest number of superconducting IDs!

- Commission in Apr. & open to users in Oct. 1993
- 1.3 to 1.5 GeV ramping in operation in 1996
- 240 mA operation beam current in 1996
- Booster full energy injection in 2000
- Sc. wavelength shifter in operation in 2002
- Cryogenic system & SW6 available in 2004
- SRF cavity in operation in Feb. 2005
- Top-up injection implemented in Oct. 2005
- 1st IASW installed in 2006 & 2nd IASW in 2009

LINAC

Booster Ring

(1.5 GeV)

• 360 mA top-up & 3rd IASW in 2010

The Largest Cryo-plants (2x460W) in Taiwan

Total: 8,982 kNT

Superconducting RF (SRF) project

Goals :

- Increase the stored beam current and photon flux
- Eliminate beam instabilities by higher-order-modes (HOMs) free cavities
- Reduce the number of RF transmitters and cavities
- Extra space for ID in straight
- LHe cryogenic system to TLS

Superconducting Insertion Devices

Superconducting Wavelength Shifter (6 T, SWLS) at injection section

Superconducting Wiggler (3.2T, SW6) at downstream of SRF straight section

Statistics of TLS operation

More than 5,000 hrs. users time annually with availability in 96~99%.

(updated to Jan. 1, 2016)

* MTBF: Mean Time Between Failures

TLS Operation Statistics

Distribution of International Users (199 institutes)

Taiwan Photon Source

Major parameters of Taiwan Photon Source

Energy	3 GeV (maximum 3.3 GeV)					
Current	500 mA at 3 GeV (Top-up injection)					
SR circumference	518.4 m (h = 864 = $2^5 \cdot 3^3$, dia. = 165.0 m)					
BR circumference	496.8 m (h = $828 = 2^2 \cdot 3^2 \cdot 23$, dia. = 158.1 m)					
Lattice	24-cell DBA					
Straight sections	12 m x 6 ($\sigma_v = 12 \ \mu m$, $\sigma_h = 160 \ \mu m$) 7 m x 18 ($\sigma_v = 5 \ \mu m$, $\sigma_h = 120 \ \mu m$)					

Storage Ring Circumference (m)	518.4
Energy (GeV)	3.0
Beam current (mA)	500
Natural emittance (nm-rad)	1.6
Straight sections (m)	12(x6) + 7(x18)
Radiofrequency (MHz)	499.654
Harmonic number	864
RF voltage (MV)	3.5
Energy loss per turn (dipole) (keV)	852.7
Betatron tune	26.18/13.28
Momentum compaction (α_1, α_2)	2.4×10 -4, 2.1×10 -3
Natural energy spread	8.86×10 ⁻⁴
Damping time (ms)	12.20 / 12.17 / 6.08
Natural chromaticity	-75 / -26
Synchrotron tune	0.00609
Bunch length (mm)	2.86

Comparison of brightness between TLS and TPS

The X-ray spectrum (photon energy 8 keV ~ 70 keV): the brightness of bending magnet >10². the brightness of IDs: 4~6 orders of mag.

-

19/20

Milestone for Major Acc. Components

- Linac passed the acceptance and under operation since July 2011.
- Two sets of 300 kW transmitters completed acceptance tests in Feb. 2011.
- The 700 W LHe system completed acceptance in Nov. 2012.
- BPM electronics passed acceptance in July 2012.
- The module #1 and #2 of SRF cavity passed 300 kW high-power test in 2013.
- Completed installation of accelerators inside the shielding wall in August, 2014.
- Test of booster hardware integration was completed on Dec. 11, 2014.
- Energy ramping to 3 GeV in booster on Dec. 16, 2014
- Full energy inject to storage ring with stored beam up to 5 mA, on Dec. 31, 2014
- Optimization the performance of booster and storage ring during the Q1 of 2015. (stored current > 100 mA, booster to storage ring efficiency >75%, measured all beam optics parameters with installed Petra cavities.)
- Installation of 10 insertion devices and 2 superconducting SRF cavities in Q2 and Q3 of 2015.
- Re-start the TPS accelerators and commissioning of 6 beamlines, 10 IDs and 2 SRF cavities in September of 2015. (stored current >520 mA with DMB lattice)

Process welding of BC in Chu-Tung

Upper and lower leaf of BC Welding pumping port Alignment for the bending chamber

Bending chamber in auto-welding stage

Assembly of vacuum system and storage in Chu-Tung

Field qualification of SR and BR magnets

BR-dipole magnet

SR quadrupole/sextupole magnet

Field dispersion

SR-QM/SM:

- The b₁L of Short-QM and Long-QM are better than ±0.4%.
- The b₁L dispersion of 95.4% of SM are better than ±0.5%.
- > The integral field strength of QM/SM magnet will be fine-tuned with an independent power supply.

BR-quadrupole magnet

Field dispersion

12 BH and 42 BH:

- > The mean value of BH and BD is -0.6586 Tm and -1.3173 Tm with 987A charged respectively.
- > The standard deviation of BH and BD is 0.0007 Tm (0.11%) and 0.0019 Tm (0.14%) with 987A charged, respectively. 18

BR-QM:

-0.3

2.5%

-0.4

- The b₁L dispersion of BR-QP is better than ±0.4%.
- The b₁L dispersion of BR-QF is better than ±0.5%.

Field dispersion

12.5%

BR-QP

14

12

Magnet quantity 9 8

2

Integration of magnets, vacuum chambers and girders

Installation of a 14 m vacuum cell on the girders.

Assembling of a 14 m vacuum cell with magnets in the tunnel

Anchor the 14 m vacuum cell on the girders.

Installation of the vacuum system for the 1/12 section of booster.

Software Architecture

Control Room

Commissioning of Accelerators

Booster commissioning

Booster beam commissioning started on 12 Dec. 2014, successfully ramped to 3 GeV on 16 Dec. 2014

Beam Current (peak): 0.16 mA at 3 GeV

Ramping Current Waveform 0.5 -3.1 0.4 0.3 0.2 0.1 inerg) 3GeV (GeV) 0 80 100 120 140 160 180 200 220 240 260 280 300 320 334 0 20 40 60 Time (ms) TPS Booster SRM Energy Scan Display GUI (v 1.0) Report (8-imgs) Save Energ/Wf Control Panel Profile Information То Step Now From 2015/01/22 18:36:17 Date: Delay Time (ms) 15 167 15 BSRMTRG: 17 ms DCCT_Limit 0.03 2 mA ON/OFF Energy: 0.166 GeV DCCT: 0.041 mΑ 100 200 Fitting Results 300 pixel mm 151.75 X sigma: 1.36573 400 89.55 0.80595 Y sigma: 500 X center: 506.19 4.55569 600 444.52 4.00072 Y center: 700 0.00 Tilt: degree 800 400 200 600 800 1000 3 Þ

Beam profile measured by synchrotron light monitor

Storage Ring Commissioning at 1.5 GeV

- Dec. 24, extracted 3 GeV beam but DC septum leakage field affected booster
- Dec. 26, 1.5 GeV beam injected, multi-turn with one H corrector
- Dec. 27, stored beam with sextupoles and RF on. RF, sextupole, and quad scan
- Dec. 29, accumulated beam with kicker scan

The first synchrotron light from TPS storage ring at 3GeV, 1mA

December 31, 2014

BR and SR commissioning and optimization

On 15 Jan. 2015

BR inj. with single bunch

注射中電流增加光源亮度增強

After Optics Correction

(Beta function iteration 3)

Before Optics Correction

After Optics Correction

TPS commissioning C.C. Kuo, IPAC'15

Blue line is LOCO fitting result

Coupling Ratio and Emittance

Pinhole camera	without skew quad	with skew quad
H. Emittance (nm.rad)	1.55	1.64
V. Emittance (pm.rad)	25.6 ±3	15.7 ±3
Emittance ratio (%)	1.65	0.96
Estimated		ith a kass and a
Estimated Emittance ratio (%)	without skew quad	with skew quad
Estimated Emittance ratio (%) Betatron Coupling	without skew quad 0.170	with skew quad 0.001

Discrepancy: Orbit noise, instabilities, resolution in instrument

Design Natural Emittance $\epsilon_{x0} = 1.6 \text{ nm.rad}$

Vacuum Conditioning

- At the end of phase-I commissioning, dynamic pressure reached 1.17 10⁻⁷ Pa at 100 mA after 35 A.h beam dose
- Lifetime at 100 mA reached more than 6 hours

WEPHA048

Beam Current

- Beam current reached 100 mA in multi-bunch mode
- Single-bunch recorded 12 mA
- ~ 0.4 mA/s accumulation rate in multi-bunch mode

Beam current and lifetime

Single bunch impurity (TCSPC) near 10⁻⁵ with rf knock-out in storage ring

MOPTY074

Installation of IDs, SRF cavities and Other Hardware

Double minimum-ßy lattice

400

IDs at Straight Section of Double Mini-βy Lattice

Elliptical Polarized Undulators at long straight

 N_p : number of period; λ_p : period length; g: gap; L = $N_p \lambda_p$

In-vacuum undulators at 12 m straight

Major RF sub-system

for horizontal test: 5.0E+8 @ 2.4 MV

Performance of SRF modules 2.4 MV: $Q_0 > 5*10^8$

Instabilities in transverse and longitudinal directions

- Transverse instability suppressed by adequate chromaticity setting and by bunch-by-bunch feedbacks (BBF) in vertical planes.
- Stabilized beam up to 500 mA without problem.
- No longitudinal instability observed.

1 pixel = 1.202 um SR-DI-XPC-40 Marker 1 pixel = 1.202 um SR-DI-XPC-40 Marker 0.24 0.48 0.72 0.96 1.20 1.44 0.48 0.72 0.96 1.20 1.44 100 100 200 0.24 200 Beam profile image 300 0.36 300 400 400 0.48 @ 100 mA 500 0.60 500 0.60 600 600 0.72 n 84 800 08 pixe 400 1200 1292×964 Pinhole: H50um x V50um Pinhole: H50um x V50um 1292×964 Beam Current: 98,295 mA Eitti Beam Current: 98.130 mA

Vertical BBF "OFF"

Longitudinal Stable Beam @ 480 mA

Vertical feedback "ON"

IU22-23 Measured on 2015/11/18

Performance of fast orbit feedback system

Block of FOFB computation modules

The measured bandwidth of FOFB. Horizontal around 250Hz and vertical around 300 Hz.

- Replace the B-Chamber of Cell#2, curing abnormal vacuum burst as I >230 mA. Top-up injection with stored current 300 mA on 12/6/2015 $\,\circ\,$
- Stored beam current exceed design goal 500 mA, I > 520 mA, on Dec. 12, 2015.
- Thanks to members of Machine Advisory Committee, consultants and technical supports from various laboratories. With these strong supports around the world, we made the Taiwan Photon Source possible. This shining photon source will serve scientific communities worldwide for the next 30 years.

Longitudinal beam profile of TPS booster ring during ramping

Robinson Damping Wiggler (RDW) on TPS

• Robinson wiggler is made of four combined function magnets in one period so that the Product of dipole and quadruple field strength is negative.

Schematic diagram of Robinson wiggler

Changing damping partition in horizontal/energy.

Robinson wiggler in PS Ref: Emittance control of the PS e¹ beams using a robinson wiggler, Y Baconnier et al.

Impact of RDW on emittance and energy spread

Harmonic number	Brilliance without MRW photon s ⁻¹ /(0.1 % BW mm ² mrad ²)	Brilliance with MRW photon s ⁻¹ /(0.1 % BW mm ² mrad ²)	Increasing gain ratio of IU22	Na UU22 with MRW
	IU22 v	vith 0.74 T		00 1E20
1	3.38 x10 ²⁰	4.22x10 ²⁰	0.25	,E IU22 W/o MRW
3	1.82 x10 ²⁰	2.38 x10 ²⁰	0.308	lu siste
5	7.42 x10 ¹⁹	9.88 x10 ¹⁹	0.331	(phote
7	2.87 x10 ¹⁹	3.84 x10 ¹⁹	0.336	8 1E19 Guine
9	1.08 x10 ¹⁹	1.46 x10 ¹⁹	0.347	
	IU22 v	vith 0.92 T		photon energy (e∨)
1	2.71 x10 ²⁰	3.11x10 ²⁰	0.148	ID of Directo Devied Devied Total
3	2.22 x10 ²⁰	2.62 x10 ²⁰	0.177	light field/T length/mm number N m
5	1.33 x10 ²⁰	1.61 x10 ²⁰	0.21	IU22 gap
7	7.53 x10 ¹⁹	9.30 x10 ¹⁹	0.235	7mm 0.74 22 140 3.08
9	4.19 x10 ¹⁹	5.24 x10 ¹⁹	0.25	1022 gap 5mm 0.92 22 140 3.08

IU22 Spectrum with/without RDW

Radiation Spectrum from RDW

- MRW radiation power 9.1 KW @ 500mA.
- Instead of the general wiggler.

C.W. Huang internal presentation,07/22. 49 / 23

Short bunch by low-alpha lattice

- Emittance = 32.5nm-rad $\alpha = \alpha_1 + \alpha_2 \delta + \alpha_3 \delta^2$
- $(\alpha_1, \alpha_2, \alpha_3) = (1E-6, -6.74E-5, -2.47E-2)$
- Bunch length ~ 0.6ps (3.5 MV rf)
- Integrated sextupole < 6.0 m⁻²

Longitudinal phase space

TPS low alpha, low emittance

- Emittance = 3.2 nm-rad,
- (α₁, α₂, α₃)=
 (2.62E-5, 1.19E-4, -1.19E-2)
- bunch length ~3.1ps (3.5MV rf)
- SF ~ 9.0 m⁻²

Lattice function

Short bunch by laser slicing

Summary of Estimation on Pulse Length

Modulator position	Radiator position	Laser (fsec)	Laser slippage (fsec)	Betatron dependence (fsec)	Dispersion dependence (fs)	Slice bunch at radiator (fsec)
с	R1	50	48	1.36	30.0	75.54
	R2	50	48	1.88	44.1	82.17
A	R1	50	48	1.35	27.9	74.73
	R2	50	48	1.88	44.1	82.17
В	R1	50	48	1.35	39.9	79.99
	R2	50	48	1.90	46.9	83.71

TPS Beamline construction plan

Based on the allocated budget, there will be three phase of construction plan to install 25 beamlines.

19 beam ports available for industrial and international collaboration.

Design of first-phase beamlines

(*µ*-focus macromolecular crystallography)

(High resolution Inelastic soft-x-ray scattering)

52

Development of Taiwan Synchrotron Facilities

High-brightness photocathode gun and THz FEL project

	L_0 entrance	L_0 exit	L_1 exit	L_2 exit	L_3 exit
rms bunch time duration σ_t [fs]	2247	2294	2290	60	60
slice peak current I_p [A]	12.0	11.7	14	500	500
beam energy E_{avg} [MeV]	3.54	93.08	138	231	325
slice beam energy rms spread $\sigma_{\gamma}/\gamma_{avg}$ [%]	0.016	0.002	0.001	0.003	0.005
slice rms x-emittance ϵ_{nx} [µm]	0.59	0.56	0.56	0.74	0.74
slice rms y-emittance ϵ_{ny} [µm]	0.59	0.56	0.56	0.80	0.80

Table 2: Linac simulation result for the VUV Baseline case.

Summary

• Taiwan Light Source

- 1.5 GeV beam energy provides 5000~ 5500 hrs with 360 mA top-up to users. Photon energy can be up to ~30 keV by SC wigglers.
- Beamlines in SPring-8 provide hard x-ray to users.
- From MOST's point of view, the long term-strategy about TLS fate needs to be planned with the operation of TPS.
- Coherent Transition Radiation, THz and UV FEL will be tested with photocathode gun.

Taiwan Photon Source

- Ten insertion devices and two SRF cavities installed in Q2 and Q3, 2015.
- Double mini- β y lattice and phase-I BLs commissioning since Q4, 2015.
- 3 GeV storage ring top-up injection with 480 mA.
- Start normal operation in September 2016.
- Single bunch and hybrid operation modes were tested with beamline.
- Robinson damping wiggler under investigation, potentially can reduce emittance by ~50% with increase of energy spread.

Acknowledgement

- ➤ Thanks to the TPS team for their hardworking and devotion to the project, and efforts made to accomplish the system integration and commissioning successfully in very short period.
- ➤ We also very appreciate to the helps from all experts worldwide for the achievement in this community.

Taiwan Photon Source (TPS)

Thank you for your attention!