

Boreskov Institute of Catalysis SB RAS

Budker Institute of Nuclear Physics

Current status of EXAFS station of SSTRC. Application of XAFS spectroscopy for the study of promising functional nanomaterials.

Siberian Synchrotron and Terahertz Radiation Centre

XAFS spectroscopy - (EXAFS и XANES)

EXAFS station of SSTRC

Detectors: "Scionix" and "Canberra"

Used modes: - transition and fluorescent yield

Accuracy of determination:

Interatomic distances (R) ~1% Coordinaton nambers (N) ~ 5-10% D-W factors ~ 20-40%

Used XAFS energy region

Old range: K-edges

Old range: L-edges

New range: K-edges

Study of thin gold films prepared by CVD method Used precursors:(1) (CH3)2Au(OAc), (2)(CH3)2Au(dtc), (3)(CH3)2Au(piv)

Support – Si plane with orientation (100)

XAFS study of catalytic membranes

XAFS ANALYSIS OF THE LOCAL STRUCTURE

OF CeO₂-ZrO₂ MIXED OXIDES

Fig. 4. Model illustration of the cation-cation network for the CeO_2 - ZrO_2 samples with the same chemical composition (Ce/Zr = 1). CZ55-1 consists of pure CeO_2 and ZrO_2 . Ce rich domain and Zr rich one in CZ55-2 still remain. $Ce_{0.5}Zr_{0.5}O_2$ solid solution in CZ55-3 forms homogeneously at the atomic level.

Main applications of catalytic systems (based on precious and transition metals)

Au-Ni Catalytic nanosystem:

Ni⁺² O

Au⁰

TEM DATA and proposed Model

Au⁰

MIC C) PAR

 AI_2O_3

Au-Pd/Al2O3 System

OH

Particle size ~ 2.8-2.9 нм.

сцсти

Au-Pd Catalytic nanosystem:

Accumulation MnO*(H2O)_x compound by gliom tumor

Boreskov Institute of Catalysis SB RAS

Budker Institute of Nuclear Physics

Thank you for your attention

Siberian Synchrotron and Terahertz Radiation Centre

Огромная значимость исследований для
катализа, материаловедения, физики
твердого тела, неорганической химии, наук
о земле и тд.

- Разнообразные композиционные материалы
- (нано-структурированные покрытия и тонкие пленки).
- Материалы с оптическими функциями
- (полупроводниковые композиты)
- Материалы с химическими функциями
- (катализаторы, мембраны, сенсоры)
- Материалы с биологическими функциями
- (лекарства, импланты, соединения-зонды)

Исследование катализаторов дебензилирования диметилбензиламина

Pd-Pd

Pd-K

Pd-foil

6%Pd/C

10.0

20%Pd B/C

Показано, что наибольшую активность проявляет катализатор, полученный с использованием борогидрида натрия в качестве восстановителя. Катализатор содержит равномерно распределённые частицы палладия, локализованные в поверхностных слоях металлического палладия. носителя.

Исследование полупроводниковых наноструктур GaAs локализованных в упорядоченных калиброванных каналах пористых матриц Al₂O₃.

Перспективные направления применения полупроводниковых нанокомпозитов

- * Компьютеры нового поколения на оптической элементной базе
- * Дисплеи со сверхвысоким разрешением и малым временем отклика
- * Создание экономичных светоизлучающих устройств с высокой яркостью
- * Создание высокоэффективных солнечных элементов

*Образцы: - нанокомпозиты GaAs-Al2();, полученные методом термического испарения вещества в сверхвысоком вакууме при варьировании условий и температур синтеза, размера калиброванных пор матрицы оксида алюминия (30-160нм). ** Методы: EXAFS, рентгеновская дифракция (СИ), СЭМ, РФЭС.

Матрица Al2O3

тигель с GaAs

Порошок GaAs подается в испаритель косвенного нагрева – происходит испарение, материал летит в виде отдельных атомов к матрице и конденсируется в порах оксида аллюминия (<u>30-160 нм</u>).

СЭМ изображения наноструктур, полученных в порах анодированного алюминия после удаления матрицы (d пор = 120 нм).

R. Å

Полученная новая информация о локальной и кристалической структурах, особенностях строения и состояния наноструктур позволит оптимизировать методику формирования нанокомпозитных структур на основе – GaAs-Al₂O₃, с заданными структурно-функциональными свойствами для перспективных полупроводниковых устройств.

EXAFS-спектроскопия

2

Ga-K Sample - 1 Sample - 2 Sample - 3

10

8

Исследование CVD пленок на основе соединений Hf и AI (для создания материалов с высоким значением диэлектрической проницаемости («*high-k*»-диэлектрики).

Пленки оксидов металлов получали CVD методом (химическое осаждение из газовой фазы) из летучих комплексных соединений 2,2,6,6-тетраметил-3,5-гептандионата гафния Hf(thd)4, циклопентадиенил гафния-бисдиэтиламида (C5H5)2Hf(N(C2H5)2)2 и трис-ацетилацетоната алюминия (III) (AI(acac)3. алюминия (III) (AI(acac)3. Осаждение пленок выполнялось по методике непрерывного CVD с термической активацией термораспада исходных соединений. Пленки осаждались на кремниевые подложки КЭФ-7.5 ориентации (100).

2,3,4 – пленок (HfO2)х(Al2O3)1-х с 4 ат. %, 10ат.% и 30 ат. % Al соответственно. Рис. Дифрактограммы: 1 – реперной моноклинной структуры HfO2 (база данных PDF, 34-104) и 2,3 пленок полученных из Hf(dpm)4 при 600°С и из (C5H5)2Hf(N(C2H5)2)2 при 350°С соответственно.

Изучено распределения катионов в структуре тонких пленок бинарных оксидов на основе оксида Hf. Установлено, что методом **CVD** из бета-дикетонатных комплексов Hf и Al получаются нанокристаллические или аморфные пленки твердых растворов, а не механические смеси их оксидов. Выполнен анализ данных и установлены структурные параметры и состав для пленок HfO2 и бинарных оксидов на их основе, формирующихся при их легировании алюминием. Рассмотрены возможные варианты структурных моделей.