Duration of coherent synchrotron radiation pulses accessed via time-resolving and correlation techniques

A. Pohl,^{1,2} A. Semenov,² H.-W. Hübers,^{1,2} A. Hoehl,³ M. Ries,⁴ G. Wüstefeld,⁴ G. Ulm,³ K. Ilin,⁵ P. Thoma,⁵ and M. Siegel⁵

¹Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin, Germany
 ²Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany
 ³Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
 ⁴Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
 ⁵Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe, Germany

Metrology Light Source

- Electron current $1 \text{ pA} 200 \text{ mA} (1 2 \cdot 10^{11} \text{ e}^{-})$
- Max. energy E_0 630 MeV
- Circumference 48 m
- Fill pattern typ. 80 bunches
- Revolution freq. f_{rev} 6.25 MHz
- RF frequency f_{rf} 500 MHz
- THz Beamline $100 \,\mu\text{m} 7 \,\text{mm}$

PB HZB

 $(100 \text{ cm}^{-1} - 1.4 \text{ cm}^{-1})$

J. Feikes et al., Phys. Rev. ST Accel. Beams. 14, 2011, 030705

Setup

- Martin-Puplett Interferometer Setup
- Off-axis parabolic mirror OAP:
 (*f* = 450 mm, 167 mm)
- Wiregrid, G1 @ 54.7°, G2 @ 0°
- Roof mirror M1 / M2
- 400 mm delay line (max. 2.67 ns)
- D1 / D2 detectors
- Power: 1.0 mW @ G2

6.4 mW total (150 mA, low- α)

Correlation meassurement

- Correlation of the THz pulse with itself
- 2 linear polarized pulses superimpose at the wiregrid
- Measured intensity: $I_{1,2}(\omega,t) = c\varepsilon_0 \overline{\left[E_1(\omega,t) + E_2(\omega,t+\delta t)\right]^2} = I_{in}(\omega)(1\pm\cos(\omega\delta t))$

Difference Interferogram $a(\delta t) \rightarrow$ intensity independent a

$$u(\delta t) = \frac{I_1(\delta t) - I_2(\delta t)}{I_1(\delta t) + I_2(\delta t)}$$

MLS Spectra

- Measured with FTS
- Coherent emission spectra (blue)
- Incoherent emission spectra (red)

Three comparative measurements

 Direct detection - Zero bias Schottky diode (with Log-spiral antenna glued to 12 mm silicon lense)

- II. Field correlation YBCO Detector (high T superconductor, 2 microbridges, polarization sensitive twin-slot antenna, T_c = 82 K @ 1 K transition)
- III. Frequency resolved autocorrelation via FTS

HZB

I. Direct pulse response

- Schottky diode detector
- Time resolved transients of THz pulses
- Fit via Duhamel integral

$$V(t) = \int \operatorname{sgn}[E(\xi)] \, \frac{dE(\xi)}{dt} h(t - \xi) \, d\zeta$$

• With $E(\xi) = \delta(\xi)$

 \rightarrow gives system time response $\tau_{\rm R}$ =26 ps

$$\begin{array}{c} 2,5 \\ 2,0 \\ 1,5 \\ 1,0 \\ 0,5 \\ 0,0 \\ -0,5 \\ -40 \\ -20 \\ 0 \\ 0 \\ -20 \\ 0 \\ 0 \\ 0 \\ -20 \\ 0 \\ 0 \\ 0 \\ -20 \\ 0 \\ 0 \\ -20 \\ 0 \\ -20 \\ 0 \\ -20 \\ 0 \\ -20 \\ 0 \\ -20 \\ 0 \\ -20 \\ 0 \\ -20 \\$$

• CSR pulse duration:
$$\tau_{CSR} = \sqrt{\tau_{Diode}^2 - \tau_R^2}$$

BHZB

A. Pohl et al., J. Appl. Phys. 119, 2016, 114903

FWHM duration of CSR pulses

- Systematically larger pulse duration than VIS pulse length
- VIS pulse length: streak camera @ 470 nm

II. Field correlation

- YBCO detector
- Fit procedure to model CSR field

 \rightarrow CSR duration

Fit experimental inteferogram *I* by modelling field transient *E* with Envelope *B* and computed spectrum *S*

$$E(t, dt, \tau, \phi) = B(t, dt, \tau) \int \sqrt{S(f)} \cos(2\pi f(t+dt) + \phi) dt$$
$$B(t, dt, \tau) = 2(n(t+dt)/\tau)^2 \exp\left(-n(t+dt)\tau^{-1}\right)$$
$$I(dt, \tau) = K \int \left| E(t, 0, \tau, 0) + E(t, dt, \tau, \frac{\pi}{2}) \right|^p dt$$

BHZB

Baseline due to saturation of amplifier for intense CSR (bursting)

A. Pohl et al., J. Appl. Phys. 119, 2016, 114903

FWHM duration of CSR pulses

• 21 ps calculated @ 17 ps VIS bunch length

III. Spectrally resolved pulse duration

- Spectra in horizontal & vertical polarization
 @ different time delay
- Calculation of $a(f, \delta t)$

• Fit:

$$a(f,t)_{\text{FIT}} = A \exp\left[-\frac{(t-s)^2}{2\sigma^2}\right] \sin\left[f(t-s)\right] + B$$

Estimation of gaussian pulses

BHZB

• Envelope \rightarrow pulse duration

Spectrally resolved pulse duration

• Average 18 ps @ 16 ps VIS pulse duration

Spectrally resolved pulse duration

ZB

- Water absorption is visible \rightarrow pulse lengthening due to dispersion
- Low frequencies show larger pulse durations \rightarrow internal beamline reflections

H.-W. Hübers et al., Appl. Phys. Lett. 87, 2005, 184103

Conclusion

- Schottky diodes → fast enough for direct THz pulse analysis and reconstruction of ps pulse durations
- II. YBCO detectors \rightarrow can provide pulse durations close to VIS by field correlation and reconstruction of the CSR field
- III. Frequency resolved method → gives information of frequency dependend pulse durations

Thanks for your attention

