XAFS study of catalytic nanosystems promising for environmental catalysis

Yakimchuk E.

Boreskov Institute of Catalysis SB RAS
Budker Institute of Nuclear Physics
Siberian Synchrotron and Terahertz Radiation Centre
Methane Acid conversion of a synthesis gas

CH₄ + CO₂ → 2CO + 2H₂

Active component: TiO₂

Side of membrane: TIPS RAS

Membrane

\(d_{\text{pores}} = 2-1000 \text{ nm} \)

Industrial useful substratums:

Basicle principle of formation

Application area:

Catalytic conversion of hydrocarbons into hydrogen containing gas
Tasks:

Objects to analyzed with complex methods:
- Original catalitics systems
- Calcined with different conditions systems

Application systems
Pd-Co/TiO₂
Pd-Mn/TiO₂

To understand principle of formation bi-metall active centres of supports and there structural features
Tasks of XAFS method:

With XAFS-spectroscopy we can:
- Establish a symmetry of the immediate environment, charge state of atoms and local structure

Using another methods such as X-ray Photoelectron Spectroscopy and XRF spectroscopy we can know:
- Elements composition on a surface
- Size of particles
- Phase state
Systems with Pd-Co. Preparation:

Parents compounds:
\(\text{н}-\text{butoxide Ti} \)
\(\text{PdCo(\text{µ-OOCMe})_4(\text{NCMe})}\)

Coprecipitation in toluene with the addition of an alcohol-water mixture for hydrolysis

Next steps:

1) Drying with 25°C (gel)

2) With Ar
 - 5 hours, 550°C

3) Microwave, then Ar
 - 2 hours, 550°C
Study:

XRF spectroscopy
Only for TiO₂
XANES (Pd-K) and FT of Pd for 1%Pd-2%Co/TiO₂ and comparison sample:

a) 1%Pd-2%Co - previous (gel, drying 25°C);

b) 1%Pd-2%Co/TiO₂ (550°C, microwave, calcination);

c) 1%Pd-2%Co/TiO₂ (550°C, air);

d) 1%Pd-2%Co/TiO₂ (550°C, Ar);

e) PdO – comparison oxide;

f) Pd – foil.
XANES (Pd-K) and FT of Co for 1%Pd-2%Co/TiO₂ and comparison sample:

a) 1%Pd-2%Co - previous (gel, drying 25°C);
b) 1%Pd-2%Co/TiO₂ (550°C, microwave, calcination);
c) 1%Pd-2%Co/TiO₂ (550°C, air);
d) 1%Pd-2%Co/TiO₂ (550°C, Ar);
e) Co₃O₄ – comparison oxide;
f) Co – foil.
System with Pd-Co:

The main parts of Pd stay in oxide phase. It's a result from comparing distances and coordination numbers with crystallographic data.

<table>
<thead>
<tr>
<th>model</th>
<th>Pd-O</th>
<th>Pd-Pd</th>
<th>Pd-Me</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Me=Pd</td>
<td>2.0 Å</td>
<td>3.04 Å</td>
<td>3.34-3.4 Å</td>
</tr>
<tr>
<td></td>
<td>3.6-3.8</td>
<td>0.9-1.0</td>
<td>4.8-5.1</td>
</tr>
<tr>
<td>#2 Me=Co</td>
<td>2.0 Å</td>
<td>3.04 Å</td>
<td>3.4-3.6 Å</td>
</tr>
<tr>
<td></td>
<td>3.6-3.8</td>
<td>0.9-1.0</td>
<td>4.8-5.1</td>
</tr>
</tbody>
</table>

Presumably we saw formation of non-stoichiometric compounds with structural properties similar mixed oxides Co-Ti и Pd-Co.

<table>
<thead>
<tr>
<th>sample</th>
<th>Co-O</th>
<th>Co-Co</th>
<th>Co-O-Me</th>
<th>Co-O-Me</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96 Å</td>
<td>2.85 Å</td>
<td>3.32 Å</td>
<td>3.76 Å</td>
</tr>
<tr>
<td></td>
<td>3.9-4.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>model</th>
<th>Co-Co</th>
<th>Co-Me</th>
<th>Co-Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoTiO₃</td>
<td>2.99</td>
<td>3.39</td>
<td>3.74</td>
</tr>
<tr>
<td>PdCoO₂</td>
<td>2.83</td>
<td>3.38</td>
<td>-</td>
</tr>
</tbody>
</table>
System with Pd-Mn. Preparation:

- **Precursor**
- **Gel formation**
- **Drying (Ar) and calcinization (500 °C)**

XRF spectroscopy

Only for TiO$_2$
XANES (Pd-K) and FT of Co for Pd-Mn/TiO$_2$ and comparison sample
a) Pd-Mn/TiO$_2$ - gel
b) Pd-Mn/TiO$_2$ – oxide, T=500C
c) PdO comparison sample
d) Pd – foil

<table>
<thead>
<tr>
<th>№</th>
<th>#1 – Pd-Mn/TiO$_2$ (gel)</th>
<th>#2 – Pd-Mn/TiO$_2$ (metall)</th>
<th>PdO</th>
<th>Pd0 metall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R$_1$, Å</td>
<td>N</td>
<td>R$_2$, Å</td>
<td>N</td>
</tr>
<tr>
<td>Pd-O</td>
<td>1.9 8</td>
<td>4.1</td>
<td>2.0 0</td>
<td>3.8</td>
</tr>
<tr>
<td>Pd-Pd</td>
<td>2.9 9</td>
<td>2.0</td>
<td>3.0 3</td>
<td>2.5</td>
</tr>
<tr>
<td>Pd-Pd-</td>
<td>3.5 0-3.5 5</td>
<td>3.4 3</td>
<td>3.4 3</td>
<td>8.0</td>
</tr>
</tbody>
</table>
XANES (Pd-K) and FT of Co for Pd-Mn/TiO₂ and comparison samples:

a) Pd-Mn/TiO₂ - gel
b) Pd-Mn/TiO₂ – oxide, T=500°C
c) Mn₃O₄ (*0.5)
d) MnO (*0.5)
e) Mn₂O₃ (*0.5)
f) MnO₂ (*0.5)

System with Pd-Mn: Mn-k edge

\[R_{\text{Mn-O}} = 2.11 \AA, \; N = 4.9 \]

Pd-Mn/TiO₂ - gel

\[R_{\text{Mn-O}} = 2.03 \AA, \; N = 4.5 \]
\[R_{\text{Mn-Me (Mn, Ti)}} = 2.96-3.02\AA, \; N = 2 \]
\[R_{\text{Mn-Me (Mn, Ti)}} = 3.7-3.8\AA, \; N = 1 \]

Pd-Mn/TiO₂ T=500°C

\[R_{\text{Ti-O}} = 1.94-1.98\AA, \; N = 6 \]
\[R_{\text{Ti-Ti}} = 3.0-3.04\AA, \; N = 4 \]
\[R_{\text{Ti-Ti}} = 3.74-3.78\AA, \; N = 4 \]
Results:

For Pd-Co:
- We supposed that systems has strong interaction between Pd and Co in a precipitation stage. In this situation Co take place in structure of supporte to locate atoms of Pd. They formatited a mixed oxide that are not non-stoichiometric.

For Pd-Mn:
- As a result we supposed that for gel state for Pd-Mn systems formed to a defect nanophase PdO, that consists of basic Pd-Mn complexes and PdO.
- We saw deffects of MnO_x nanophase with stabilization of ions with local deffects.
Thanks for your attention