Новые методы ускорения частиц и экстремальные состояния материи 19.06.2020

Параметрические неустойчивости в сильно градиентной фемтосекундной лазерной плазме

<u>И.Н. Цымбалов</u>, Д.А. Горлова, С.А. Шуляпов, К.А. Иванов, А.Б. Савельев. Физический факультет и Международный лазерный центр Московского государственного университета им. М.В. Ломоносова

Содержание

Актуальность исследования параметрических неустойчивостей для задач плазменного ускорения электронов

Неустойчивость ВКР – двухплазмонный распад в сильно градиентной фемтосекундной лазерной плазме

Генерация полуторной гармоники и ее использование для диагностики плазмы

Актуальность работы

Ускорение электронов в малоплотных мишенях

Ускорение электронов на поверхности твердотельной мишени

Thévenet, M., et al. *Nature Physics* 12.4 (2016): 355.

Mao, J. Y., et al. *Applied Physics Letters* 106.13 (2015): 131105.

Ma, Yong, et al. *Proceedings of the National Academy of Sciences* (2018): 201800668.

Электронный пучок, полученный при отражении лазерного

излучения релятивистской интенсивности от плазмы

Tsymbalov I. et al. **PPCF** 2019. Vol. 61, № 7.

Плазменные волны и генерация 3/2w на поверхности твердотельной мишени

Tarasevitch A. et al. 3/2 harmonic generation by femtosecond laser pulses in steep-gradient plasmas //Physical Review E. – 2003. – T. 68. – №. 2. – C. 026410.

Veisz L. et al. Three-halves harmonic emission from femtosecond laser produced plasmas //Physics of Plasmas. $-2002. - T. 9. - N^{\circ}. 8. - C. 3197-3200.$

Параметры моделирования

Плазменные волны

 $I=10^{17} \, W/cm^2$

Плазменные волны

Параметрические неустойчивости в плазме:

Двухплазмонная неустойчивость

$$\omega_{p1} + \omega_{p2} = \omega_0 \qquad \boldsymbol{k_{p1}} + \boldsymbol{k_{p2}} = \boldsymbol{k_0}$$

Инкремент неустойчивости

$$\gamma = \frac{|\boldsymbol{k}\boldsymbol{v}_{osc}|}{4} \frac{|(\boldsymbol{k} - \boldsymbol{k}_0)^2 - \boldsymbol{k}^2|}{|\boldsymbol{k}|\boldsymbol{k} - \boldsymbol{k}_0|}$$

и
Гипербола
максимально
го
инкремента
.
$$k_{\perp}^{2} = k_{\parallel}(k_{\parallel} - k_{0})$$

Волна накачки

Двухплазмонная неустойчивость

3.5-3.0-2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 kx/k0

Гибридная неустойчивость

Характерные значения волновых чисел

k_{1x}≈1.1-1.2ω₀/c

ky/k0

ky/k0

3.0 20 20 2.5 2.5 2.5 45⁰ 50⁰ **60**⁰ 18 18 2.0 2.0 2.0 1.5 1.5 16 16 1.5 1.0 1.0 1.0 14 14 0.5 0.5 0.5 ky/k0 ky/ko 12 12 0.0 0.0 0.0 -0.5 10 -0.5 -0.5 10 -1.0-1.0-1.0-1.5-1.5-1.5-2.06 -2.0 -2.0-2.5 -2.5-2.5 -2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 kx/k0 kx/k0 kx/k0 1.0 3.0 3.0 3.0 2.5 2.5 2.5 0.9 2.0 2.0 2.0 0.8 1.5 1.5 1.5 0.7 1.0 1.0 1.0 0.6 0 0.5 0.5 0.5 ky/k0 ky/k0 0.0 0.0 0.0 0.5 -0.5-0.5-0.50 0.4 -1.0-1.0-1.00.3 -1.5 -1.5-1.50.2 -2.0 -2.0 -2.00.1 -2.5-2.5 -2.5 -3.0 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -3.0-3.00.0 -3.0-2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -3.0-2.5-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 kx/k0 kx/k0 kx/k0

И. Н. Цымбалов и др. *Квантовая электроника*, vol. 49, no. 4, pp. 386–390, 2019.

$\pi_0 \sim - \nabla E^2$ Пондеромоторная сила

 $E^{2} = E(\omega_{0}) E_{1}(\omega_{0}/2) + E(\omega_{0}) E_{2}(\omega_{0}/2) + E(\omega_{0}) E_{s}(\omega_{0}/2) + нерезонансные члены$

 $H^{2} = H(\omega_{0}) H_{s}(\omega_{0}/2) +$ нерезонансные члены $k_{1x} + k_{2x} = k_{0x}$

E_{1,2}(ω₀/2) – поля плазменных волн

Ε(ω₀), **H**(ω₀) – поля лазерного импульса (накачка)

 $E_{s}(\omega_{0}/2), H_{s}(\omega_{0}/2) - поля$ Стоксовой рассеянной электромагнитной волны

k_{1x}≈1.1ω₀/c k_{2x}≈-0.23ω₀/c k_{0x}≈0.87ω₀/c

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

3.0 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

 $N_{e}(k_{x},k_{y})$

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Генерация излучения 3/2w

Генерация излучения $3/2w j_1(3\omega_0/2) = \rho(\omega_0/2)v(\omega_0)$

Генерация излучения 3/2w

Генерация излучения 3/2w

3/2w: измерение угловых зависимостей

Оценка параметров преплазмы

Переход к большим интенсивностям

Основные результаты

1. Гибридная неустойчивость ВКР – двухплазмонный распад является основным механизмом возбуждения плазменных волн при наклонном падении (под углом 45-60 град.) р-поляризованного лазерного излучения с интенсивностью в диапазоне 10^{17} - $5*10^{19}$ Вт/см² на плазму с градиентом концентрации электронов L/λ =0.5-3 (λ - длина волны излучения) в области начальных концентраций 0.2-1 от критической концентрации n_c . Генерирующиеся при этом плазменные волны имеют широкий пространственный спектр $\Delta k^{\sim} k_0 (k_0$ - волновое число падающего излучения) вдоль оси, направленной по градиенту электронной концентрации, а проекции волновых чисел на ось, направленную вдоль поверхности плазмы близки к ~1.2 k_0 и ~0.2 k_0 .

2. Условия синхронизма для генерации излучения на частоте 3/2ω в неоднородной плазме с *L*/λ=0,5-3 вследствие рассеяния p-поляризованного лазерного излучения с интенсивностью 10¹⁷-5*10¹⁹ BT/см² на плазменных волнах гибридной неустойчивости при углах падения 45-60 град. выполняются немедленно, в области возбуждения этих волн, из-за широкого пространственного спектра плазмонов и волны накачки. Нелинейность плазменных волн уже при интенсивностях 10¹⁷ BT/см² приводит к появлению дополнительного механизма генерации излучения на частоте 3/2ω за счет генерации нелинейного тока при взаимодействии второй гармоники одного из лазмонов с первой гармоникой другого плазмона либо со стоксовой электромагнитной волной.

Спасибо за внимание!