High current well-directed beams of super-ponderomotive electrons for laser driven nuclear physics applications.

«Ускорение частиц в плазме и лазерно-плазменная физика экстремального света» онлайн-семинар, 16.10.2020

Olga Rosmej

GSI Darmstadt, Plasma Physics Group, IAP, GU-Frankfurt Helmholtz Research Academy Hessen for FAIR

Plasma Physics, HED-research:

ultra-intense betatron, THz and gamma-sources,

Nuclear Physics:

high fluence/ flux gamma and neutron sources, high yield (p,xn), (g,xn) nuclear reactions in GDR region theranostic relevant radio-isotopes.

Biophysics:

high flux ionizing radiation (e-, γ) for investigation of the FLASH-effect in the tumor therapy.

Collaboration: Experiment-PIC-GEANT4

GSI-Darmstadt (PP, BP); GU-Frankfurt; HH-Düsseldorf; FS, HI-Jena; JIHT Moscow; LPI-Moscow; ITEP-Moscow

ACCELERATION OF ELECTRONS IN PLASMA OF NEAR CRITICAL DENSITY

Direct laser acceleration of relativistic electrons at betatron resonance A. Pukhov, Z.- M. Sheng, and J. Meyer-ter-Vehn, V6, N7, PoP 1999

- self-focusing : $P_L > P_c = 17 \text{ GW} \times n_c / n_e$ (high aspect ration channel)
- generation of quasi-static radial E-field that has a pinching polarity for electrons.
- self-generated quasi-static B azimuthal that traps electrons in the plasma channel.

PHASE SPASE OF ACCELERATED ELECTRONS

Snapshots of the electron phase space at $ct=100\mu$ m after the laser pulse peak intensity arrived at the left plasma boundary: (a) momentum p_x vs x; (b) momentum p_y vs x; (c) momentum p_z vs x; (d) zoomed part of momentum p_y vs x in the range x/ λ = [40, 70].

Color panels present a number of pseudo-electrons in simulations.

3D-PIC simulations X. Shen

At later times, stochastic heating starts to play a major role

ct=240 μm

stochastic feature (Pz ~ Py)

3D-PIC simulations V. Popov

GENERATION OF PLASMA WITH NEAR CRITICAL ELECTRON DENSITY

Critical density $n_c(1054 \ nm) = \frac{\varepsilon_{0m_e}}{\rho^2} \omega_L^2 = 10^{21} \ cm^{-3}$ ٠

 \rightarrow Foil target:

Rosmej, O et al 2019 New J. Phys. 21 043044

 n_e/n_c 100

SET-UPS FOR DIFFERENT PHELIX-LASER INTENSITIES

1ω Nd:glass

Experiments were performed at 10²¹W/cm² and 10¹⁹W/cm²

DISTRIBUTION OF LASER ENERGY IN THE FOCAL SPOT

DIAGNOSTIC SET-UP P176, PHELIX, September 2019

Electron spectrometer: electron energy distribution

Static magnets, B=0.99T 2% energy resolution up to 100 MeV Detector: calibrated imaging plates -> <u>absolute number of electrons</u>

Cylinder diagnostic: electron angular distribution

3 cylinders, 3mm steel each R=200mm Detector: imaging plates Nuclear diagnostic: γ, neutron fluences

Ge-detector: isotope type and number

EXPERIMANTAL SET-UP P176, PHELIX, September 2019

Target-Holder

- 10 μm Ti, Au-foils
- 1-2mm Au, W plates
- CHO- foams
- combination

NCD plasma: low density polymer foams ρ =2 mg/cc (1.7 × 10²⁰ at/cm³) 300-500 µm thickness, fully ionized (Z_{mean}= 4.2) -> n_e = 0.65 × 10²¹ cm⁻³

TARGETS AFTER INTERACTION

500 μm 2 mg/cc foam= 700 nm 1.4 g/cc polymer foil 2.5-3 mm

Sh. 28 500 μm foam

shot 12: 10²¹W/cm²: 40J, d=3 μm (1+1)mm Au-radiator

shot 21: 10¹⁹ W/cm²: 20J d=15 μm Foam+ 1mm Au

shot 28: 10¹⁹ W/cm²: 20J d=15 μm Foam+ 0.1mm Pb

N. Borisenko, LPI

ENERGY AND ANGULAR DISTRIBUTION of MeV-ELECTRONS

Highly energetic and well directed electron beam (γ >10) generated in NCD plasma

Shot 40: 700 fs, 10¹⁹ W/cm² Target: Au foil 10 um

Shot 42: 700 fs, 10¹⁹ W/cm² Target: 325 um TAC + Au foil 10 um

electron spectra at 0° to laser axis

cylinder diagnostic

ANGULAR DISTRIBUTION OF RELATIVISTIC ELECTRONS

Well directed electron beam (γ >10) generated in foams

Shot 40: 700 fs, 10¹⁹ W/cm² Target: Au foil 10 um

no directionality

Shot 42: 700 fs, 10¹⁹ W/cm² Target: 325 um 2 mg/cc TAC+ Au foil 10 um

 $\frac{1}{2}$ θ at FWHM ≤ 13°

more than 30 times increase of the IP signal,

low IP signal,

S. Zähter, GSI

ENERGY DISTRIBUTION OF SUPER-PONDEROMOTIVE ELECTRONS

700 fs, $E_{FWHM} = 20 J$, $10^{19} W/cm^2$ target: foam + foil

M. Gyrdymov, Frankfurt University

ENERGY AND NUMBER OF MeV-ELECTRONS INSIDE DIVERGENCE CONE

M. Gyrdymov, Frankfurt University

ENERGY AND NUMBER OF MeV-ELECTRONS INSIDE DIVERGENCE CONE

FULL 3D-PIC SIMULATIONS

3D view of the laser intensity distribution

SIMULATED ANGLE DEPENDEND ELECTON ENERGY DISTRIBUTION

ELECTRON ENERGY DISTRIBUTION FOR TWO LASER INTENSITITES

High current, well directed beams of multi-MeV electrons were

generated in NCD-plasma at moderate relativistic laser intensities:

- Effective temperature above 10 MeV (10²¹ W/cm² -> foil: 6 -7 MeV)
- Max energy up to 100 MeV (10²¹ W/cm²-> foi: ~ 40 MeV)
- E > 3 MeV propagate in $\frac{1}{2} \theta$ at FWHM $\leq 13^{\circ}$
- High current: up to $1 \mu C$ at E > 2 MeV; > 50 nC (6%) E > 7.5 MeV

Application in Nuclear Physics:

- high fluence/ flux gamma and neutron sources
- high yield (p,xn), (γ ,xn) nuclear reactions in Giant Dipole Resonance (GDR) region
- theranostic relevant radio-isotopes.

O N Rosmej et al, New J. Phys. 21(2019) 043044

https://dx.doi.org/10.1088/1367-2630/ab1047

"Interaction of relativistically intense laser pulses with long-scale NCD plasmas for optimisation of laser based sources of MeV electrons and gamma-rays"

O. N. Rosmej et al, <u>Plasma Phys. Control. Fusion 62 (2020) 115024</u> https://doi.org/10.1088/1361-6587/abb24e

"High-current laser-driven beams of relativistic electrons for high energy density research"

M. M. Guenther et al, "New insights in laser-generated ultra-intense gamma-ray and neutron sources for nuclear applications and science"

submitted to Nature Communications

PHOTO-NUCLEAR REACTIONS

Application of nuclear diagnostics for characterization of MeV Gamma and neutron beams

Photodisintegration reactions

Photonuclear Reaction	Treshhold Energy [MeV]	Giant Dipole Resonance (GDR) [MeV]	Half life
$^{181}_{73}Ta(\gamma,n)^{180}_{73}Ta$	7,57	12	8,152 h
$^{197}_{~79}Au(\gamma,n)^{196}_{~79}Au$	8,03	14	6,183 d
$^{115}_{49}In(\gamma,n)^{114m}_{49}Au$	9,23	15,8	49,5 d
$^{113}_{49}In(\gamma,n)^{112m}_{49}Au$	9,6	15,7	20,56 m
${}^{52}_{24}Cr(\gamma,n){}^{51}_{24}Cr$	12,04	19	27,7025 d
$^{50}_{24}Cr(\gamma,n)^{49}_{24}Cr$	13	20	42,3 min
$^{115}_{49}In(\gamma,2n)^{113m}_{24}In$	16,7	19,4	1,6582 h
$^{181}_{73}Ta(\gamma, 3n)^{178m}_{73}Ta$	22,1	28	2,36 h
$^{197}_{79}Au(\gamma, 3n)^{194}_{79}Au$	23,03	32	38,02 h

Günther M M et al 2011 Phys. Plasmas 18 083102

HIGH YIELD OF PHOTO-NUCLEAR REACTIONS

10¹² ph/sr with E> 10 MeV and effective T=10-13 MeV

A. Skobliakov, ITEP

GEANT4 OPTIMIZATION OF GAMMA AND NEUTRONS PRODUCTION

online-seminar 16.10.2020

RADIOGRAPHIC APPLICATIONS

Laser driven X-ray radiography /PHELIX:

Laserpulse: E=30J, t=700 fs, FWHM=15 μ m Target: 10 μ m Au-foil, P176 Sept. 2019

Proton radiography / SIS18

proton microscope for 4 GeV p

GAMMA-RAY RADIOGRAPHY

PHELIX Beam-time 2017

LASER ENERGY OR INTENSITY?

γ -n reaction yield caused by electrons propagating in 1x1x1cm³ Au

Isotope (max GDR)	Yield, 5x10 ²⁰ W/cm ² , 60 J	Yield, 2x10 ¹⁹ W/cm ² , 201
196Au (14 MeV)	3,00E+09	1,10E+09
194Au (32 MeV)	4.62E+07	7,62E+06
192Au (50 MeV)	4.44E+06	5,80E+05

25-fold increase of the laser intensity does not lead to much higher reaction yields in the GDR region

INTERNATIONAL COLLABORATION

<u>Theory, simulations</u>: N. E. Andreev, V. Popov (JIHT), X. Shen, A. Pukhov (HHU, Düsseldorf), A. Skobliakov (ITEP)

Targets: N. G. Borisenko (LPI)

Experiment: M. Guenther, M. Gyrdymov, P. Tavana, S. Zähter, N. Zahn, (GU-Frankfurt), A.Kantzyrev, V. Panyshkin, A. Skobliakov, A. Bogdanov (ITEP, Moscow), F. Consoli, M. Salvadori, M. Sciscio (ENEA, Italy),