Caustics in non-linear Compton scattering

Aleksei Kalinov

Skolkovo Institute of Science and Technology

27 November 2020

Mathematical model

A short pulse with a parametric envelope and chirp.

$$u_x \sim E(\tau, \alpha) \sin(\Phi(\tau, \alpha) + \phi_x)$$
$$u_y \sim E(\tau, \alpha) \sin(\Phi(\tau, \alpha) + \phi_y)$$
$$u_z \sim u_x^2 + u_y^2$$

We are interested in trying to optimize parameters and scattering angles for narrow-band radiated spectrum.

$$\frac{d^2 I}{d\omega d\Omega} \sim \left| \int_{-\infty}^{+\infty} \mathbf{n} \times [\mathbf{n} \times \mathbf{u}] \exp\left(i\omega(\tau + z - \mathbf{nr})\right) d\tau \right|^2 \qquad (1)$$

Possible approaches to optimization

1. Numerical brute-force search over parameter grid

- Inefficient but highly parallelizable.
- No guarantees of finding an optima.

Possible approaches to optimization

- 1. Numerical brute-force search over parameter grid
 - Inefficient but highly parallelizable.
 - No guarantees of finding an optima.
- 2. Gradient descent or higher-order methods of optimization
 - Requires gradient and higher-order derivatives computation.
 - Recent autograd (TF, PyTorch) advances can make it viable.
 - No guarantees of finding an optima.

Possible approaches to optimization

- 1. Numerical brute-force search over parameter grid
 - Inefficient but highly parallelizable.
 - No guarantees of finding an optima.
- 2. Gradient descent or higher-order methods of optimization
 - Requires gradient and higher-order derivatives computation.
 - Recent autograd (TF, PyTorch) advances can make it viable.
 - No guarantees of finding an optima.
- 3. Analysis of stationary phases in the integral (1).
 - Analytic but asymptotic.
 - Only applicable for special cases of envelope and phase.
 - Saves many computational resources.

Stationary phase method

For integrals of type

$$\int g(x)e^{ikf(x)}dx$$

most of its value is contained at the critical points of f(x) when $k\to\infty$ when g(x) support is compact. The rest of oscillations cancel out.

Linearly-chirped pulse with **short** Gaussian envelope makes integral (1) exactly of that type.

By finding $\nabla f(x)$ we are able to compute the integral efficiently for given values of frequency, angles and chirp parameter.

Ray surfaces and caustics

The set of critical points $\nabla f(x)=0$ can be represented as a surface in cylinder coordinates

$$\omega = \frac{1 - \frac{\chi \tau}{\sigma^2(1+\chi)}}{1 + u_z(1 - \cos \theta)},$$

Projecting the surface along the variable of integration is equivalent to computing the integral.

Caustic patterns emerge as bright lines \Rightarrow bright and narrow radiated spectrum.

Numerical confirmation

For linearly chirped pulses the problem can be reduced from 3 to 1 parameter optimization with very efficient computations.

Figure: Ray surface projection with visible caustics

Figure: Numerical simulation. The red cross indicates the maximum of spectra, corresponding to the caustic.

Numerical confirmation

Optimized spectrum is much more concentrated and radiates brighter.

Conclusion

- We showed how stationary phase method and emergent caustics can be utilized to optimize the Compton scattered spectrum.
- The method can be extended to a range of settings as long as the set of critical points can be found.