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Mathematical model

A short pulse with a parametric envelope and chirp.
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We are interested in trying to optimize parameters and scattering
angles for narrow-band radiated spectrum.
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1. Numerical brute-force search over parameter grid
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» No guarantees of finding an optima.
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3. Analysis of stationary phases in the integral (1).

> Analytic but asymptotic.
» Only applicable for special cases of envelope and phase.
» Saves many computational resources.



Stationary phase method

For integrals of type
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most of its value is contained at the critical points of f(x) when
k — oo when g(z) support is compact. The rest of oscillations cancel
out.

Linearly-chirped pulse with shert Gaussian envelope makes integral
(1) exactly of that type.

By finding V f(z) we are able to compute the integral efficiently for
given values of frequency, angles and chirp parameter.



Ray surfaces and caustics

The set of critical points V f(z) = 0 can be represented as a surface in
cylinder coordinates
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Projecting the surface along the variable of integration is equivalent to
computing the integral.

Caustic patterns emerge as bright lines =
bright and narrow radiated spectrum.




Numerical confirmation

For linearly chirped pulses the problem can be reduced from 3 to 1
parameter optimization with very efficient computations.
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Figure: Ray surface projection with . . . .
8 v S Pro] Figure: Numerical simulation. The
visible caustics . .
red cross indicates the maximum of
spectra, corresponding to the caustic.



Numerical confirmation

Optimized spectrum is much more concentrated and radiates brighter.
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Conclusion

» We showed how stationary phase method and emergent caustics
can be utilized to optimize the Compton scattered spectrum.

» The method can be extended to a range of settings as long as the
set of critical points can be found.



