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Mathematical model

A short pulse with a parametric envelope and chirp.

ux ∼ E (τ, α) sin(Φ(τ, α) + ϕx)

uy ∼ E (τ, α) sin(Φ(τ, α) + ϕy)

uz ∼ u2x + u2y

We are interested in trying to optimize parameters and scattering
angles for narrowband radiated spectrum.

d2I

dωdΩ
∼

∣∣∣∣∫ +∞

−∞
n× [n× u] exp (iω(τ + z − nr)) dτ

∣∣∣∣2 (1)



Possible approaches to optimization

1. Numerical bruteforce search over parameter grid
▶ Inefficient but highly parallelizable.
▶ No guarantees of finding an optima.

2. Gradient descent or higherorder methods of optimization
▶ Requires gradient and higherorder derivatives computation.
▶ Recent autograd (TF, PyTorch) advances can make it viable.
▶ No guarantees of finding an optima.

3. Analysis of stationary phases in the integral (1).
▶ Analytic but asymptotic.
▶ Only applicable for special cases of envelope and phase.
▶ Saves many computational resources.
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Stationary phase method

For integrals of type ∫
g(x)eikf(x)dx

most of its value is contained at the critical points of f(x) when
k → ∞ when g(x) support is compact. The rest of oscillations cancel
out.

Linearlychirped pulse with short Gaussian envelope makes integral
(1) exactly of that type.
By finding∇f(x) we are able to compute the integral efficiently for
given values of frequency, angles and chirp parameter.



Ray surfaces and caustics
The set of critical points∇f(x) = 0 can be represented as a surface in
cylinder coordinates

ω =
1− χτ

σ2(1+χ)

1 + uz(1− cos θ)
,

Projecting the surface along the variable of integration is equivalent to
computing the integral.

Caustic patterns emerge as bright lines⇒
bright and narrow radiated spectrum.



Numerical confirmation

For linearly chirped pulses the problem can be reduced from 3 to 1
parameter optimization with very efficient computations.

Figure: Ray surface projection with
visible caustics Figure: Numerical simulation. The

red cross indicates the maximum of
spectra, corresponding to the caustic.



Numerical confirmation
Optimized spectrum is much more concentrated and radiates brighter.



Conclusion

▶ We showed how stationary phase method and emergent caustics
can be utilized to optimize the Compton scattered spectrum.

▶ The method can be extended to a range of settings as long as the
set of critical points can be found.


