Диагностика лазерных импульсов сверхвысокой интенсивности при помощи туннельной ионизации тяжелых атомов

С. Попруженко

Институт общей физики им. А.М. Прохорова

M. Ciappina, S Weber S. Bulanov, G. Korn ELI-Beamlines, Czech Republic

Е. Пеганов

Национальный исследовательский ядерный университет МИФИ

T. Ditmire

University of Texas at Austin, USA

Outline

- Сверхвысокие интенсивности: что нужно, что сейчас есть и что ожидается
- > Проблема измерения интенсивности в фокусе
- Диагностика при помощи туннельной ионизации: модель и результаты расчетов
- Возможная постановка эксперимента
- > Другие перспективные схемы
- ≻ Итоговые замечания

Интенсивность

Инвариантные параметры

Сейчас...

Динамика роста пиковой

интенсивности лазерного излучения

Достигнутые значения

Размер пятна D	1PW	3PW	10PW
100µm	10 ¹⁹ W/cm ²	3•10 ¹⁹ W/cm ²	10 ²⁰ W/cm ²
10µm	10 ²¹ W/cm ²	3•10 ²¹ W/cm ²	10 ²² W/cm ²
1.3µm	7•10 ²² W/cm ²	2•10 ²³ W/cm ²	7•10 ²³ W/cm ²

V. Yanovsky et al., Opt. Exp. 2008

2•10²²W/cm²

Новые сверхмощные лазеры: от 1Пвт к 10ПВт и далее...

- Extreme Light Infrastructure Czech Republic – Hungary - Romania
- Gwanjiu Institute of Science and Technology Republic of Korea
- Shanghai Superintense Ultrafast Laser Facility China
- Exawatt Center for Extreme Light Studies Russia

Superintense Laser Facility – SULF Шанхай – 5.4ПВт сейчас

. Energy

Extreme Light Infrasstructure – ELI Чехия–Венгрия–Румыния – до 10ПВт

Apollon, Франция – 1ПВт сейчас, затем до 10ПВт

PEARL + CafCA Exawatt Center for Extreme Light Studies – XCELS, Нижний Новгород

От петаватт к экзаваттам

Знаем ли мы интенсивность в фокусе?

Размер пятна D	1PW	3PW	10PW
100µm	10 ¹⁹ W/cm ²	3•10 ¹⁹ W/cm ²	10 ²⁰ W/cm ²
10µm	10 ²¹ W/cm ²	3•10 ²¹ W/cm ²	10 ²² W/cm ²
1.3µm	7•10 ²² W/cm ²	2•10 ²³ W/cm ²	7•10 ²³ W/cm ²

(а) Расчетное

распределение, найденное из формы волнового фронта при малой интенсивности (b)Измеренное в фокусе при малой интенсивности

V. Yanovsky et al., Opt. Exp. 2008

Коррекция волнового фронта

Задача: разработать надежный способ прямого измерения интенсивностей в фокусе экстремально мощных лазеров

Туннельная ионизация тяжелых атомов

Вероятность определяется локальным значением поля E

- Чувствительна к максимальному значению напряженности поля и гораздо меньше – к длительности импульса
- Сильно нелинейная зависимость вероятности от интенсивности
- Электроны туннелируют
 последовательно, корреляционные
 эффекты малы

Нерелятивисткая туннельная ионизация

L.V. Keldysh, 1964 A.I. Nikishov, V.I. Ritus, 1966-67 A.M. Perelomov, V.S. Popov, M.V. Terentyev 1966-67

Нерелятивисткая туннельная ионизация

$$\gamma = \frac{\sqrt{2I_p\omega}}{E_0}$$

$$\gamma = 3 \cdot 10^{-2} \div 1.5 \cdot 10^{-3} \ll 1$$

$$I_p$$

$$U(\mathbf{r}) = -\frac{Z}{r} - \mathbf{E}(t) \cdot \mathbf{r}$$

$$\theta = \frac{I_p}{E_0}$$

$$w(F, \nu, l, m, I_p; t) = 2^{2\nu+1} C_{\kappa l}^2 B_{lm} I_p F^{1+|m|-2\nu}(t) \exp\left\{-\frac{2}{3F(t)}\right\}$$

$$F = \frac{E_0}{(2I_p)^{3/2}} \qquad \nu = \frac{Z}{\sqrt{2I_p}}$$

$$C_{\nu l}^2 = \frac{2^{2\nu-2}}{\nu \Gamma(\nu+l+1)\Gamma(\nu-l)} \qquad B_{lm} = \frac{(2l+1)(l+|m|)!}{2^{2|m|}|m|!(l-|m|)!}$$

Интенсивность насыщения

Ионизация аргона при 10¹⁹–10²²W/сm²

Ионизация аргона при 10¹⁹–10²²W/сm²

Ионизация аргона при 10¹⁹–10²²W/сm²

 $\mathcal{I}^* \approx 7.03 \cdot 10^{-6} (I_p)^3 [10^{20}] \mathrm{W/cm}^2$

Ионизация ксенона при 10²¹—10²⁵Вт/см²

Ионизационные каскады

Какие состояния надежнее?

Какие состояния надежнее?

туннелирование

BSI

Усреднение по фокусу

- ≻ Гауссов ТЕМ₀₀ импульс
- Одно из точных решений для фокусированного стационарного пучка

(Нарожный, Фофанов, 2000)

$$\begin{split} \mathbf{E}(\mathbf{r},t) &= \frac{iE_0\Delta^2}{2\pi(1-\cos\Delta)} \exp\left\{-i\omega(t-z/c))\right\} \times \\ &\times \int_{-\pi}^{+\pi} d\alpha \bigg[\sin^2\alpha \mathbf{e}_x - \sin\alpha\cos\alpha \mathbf{e}_y\bigg] G(\nu,\chi,\Delta) \\ &G(\nu,\chi,\Delta) = 2\int_{0}^{1} du f_1(u,\Delta) \exp\left\{i\nu f_1(u,\Delta) - i\chi f_2(u,\Delta)\right\} \\ &\nu = \frac{2\pi\Delta}{\lambda} (x\cos\alpha + y\sin\alpha) \;, \quad \chi = \frac{2\pi\Delta^2}{\lambda} z \\ &f_1(u,\Delta) = \frac{\sin\Delta u}{\Delta} \;, \quad f_2(u,\Delta) = \frac{2\sin^2\left(\Delta u/2\right)}{\Delta^2} \end{split}$$

Усреднение по фокусу

- ≻ Гауссов ТЕМ₀₀ импульс
- Одно из точных решений для фокусированного стационарного пучка (Целениций Фефеисе, 2000)

(Нарожный, Фофанов, 2000)

$$\begin{split} \mathbf{E}(\mathbf{r},t) &= \frac{iE_0\Delta^2}{2\pi(1-\cos\Delta)} \exp\left\{-i\omega(t-z/c))\right\} \times \\ &\times \int_{-\pi}^{+\pi} d\alpha \bigg[\sin^2\alpha \mathbf{e}_x - \sin\alpha\cos\alpha \mathbf{e}_y\bigg] G(\nu,\chi,\Delta) \\ &G(\nu,\chi,\Delta) = 2\int_{0}^{1} du f_1(u,\Delta) \exp\left\{i\nu f_1(u,\Delta) - i\chi f_2(u,\Delta)\right\} \\ &\nu = \frac{2\pi\Delta}{\lambda} (x\cos\alpha + y\sin\alpha) \ , \quad \chi = \frac{2\pi\Delta^2}{\lambda} z \\ &f_1(u,\Delta) = \frac{\sin\Delta u}{\Delta} \ , \quad f_2(u,\Delta) = \frac{2\sin^2\left(\Delta u/2\right)}{\Delta^2} \end{split}$$

Усреднение по фокусу

Суммарный сигнал из фокуса

Ионизация аргона: давление в пучке 10-4Тор, диаметр фокуса в перетяжке Змкм, угол схождения пучка 0.18рад. Измерение интенсивности около 5•10²¹W/cm²

 $\mathcal{I}^* \approx 7.03 \cdot 10^{-6} (I_p)^3 [10^{20}] \text{W/cm}^2$

Суммарный сигнал из фокуса

Ионизация аргона: давление в пучке 10⁻⁴Тор, диаметр фокуса в перетяжке Змкм, угол схождения пучка 0.18рад. Измерение интенсивности около 10²²W/cm² и 10²⁴W/cm²

 $\mathcal{I}^* \approx 7.03 \cdot 10^{-6} (I_p)^3 [10^{20}] \mathrm{W/cm}^2$

Экспериментальная реализация

PHYSICAL REVIEW A, VOLUME 63, 042712

"Nonrelativistic" ionization of the *L*-shell states in argon by a "relativistic" 10¹⁹ W/cm² laser field

Enam A. Chowdhury,¹ C. P. J. Barty,² and Barry C. Walker¹ ¹Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 ²Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California 92093

REVIEW OF SCIENTIFIC INSTRUMENTS 77, 10E723 (2006)

Development of an *in situ* peak intensity measurement method for ultraintense single shot laser-plasma experiments at the Sandia *Z* petawatt facility

Anthony Link, Enam A. Chowdhury, John T. Morrison, Vladimir M. Ovchinnikov, Dustin Offermann, Linn Van Woerkom, and Richard R. Freeman *The Ohio State University*, 191 West Woodruff Avenue, Columbus, Ohio 43210

John Pasley, Erik Shipton, and Farhat Beg University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0411

Patrick Rambo, Jens Schwarz, Matthias Geissel, Aaron Edens, and John L. Porter Sandia National Laboratories, P.O. Box 5800, MS 1193, Albuquerque, New Mexico 87185-1193

Экспериментальная реализация

Другие предлагаемые подходы

Towards an *in situ*, full-power gauge of the focal-volume intensity of petawatt-class lasers

C. Z. HE,^{1,2} A. LONGMAN,³ J. A. PÉREZ-HERNÁNDEZ,⁴ M. DE MARCO,⁴ C. SALGADO,⁴ G. ZERAOULI,⁴ G. GATTI,⁴ L. ROSO,⁴ R. FEDOSEJEVS,³ AND W. T. HILL III^{1,2,5,*}

Другие предлагаемые подходы

Ultra-intense laser pulse characterization using ponderomotive electron scattering

Felix Mackenroth¹, Amol R Holkundkar^{1,2}, and Hans-Peter Schlenvoigt³

- ¹ Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
- ² Department of Physics, Birla Institute of Technology and Science-Pilani, Rajasthan, 333031, India
- ³ Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, D-01328 Dresden, Germany

Другие предлагаемые подходы

Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas

O E Vais¹⁽ⁱ⁾, A G R Thomas²⁽ⁱ⁾, A M Maksimchuk²⁽ⁱ⁾, K Krushelnick²⁽ⁱ⁾ and V Yu Bychenkov^{1,3}⁽ⁱ⁾

- ¹ P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia
- ² Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, United States of America
- ³ Center For Fundamental and Applied Research, Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia

Pair production seeded by electrons in noble gases as a method for the laser intensity diagnostics

I. A. Aleksandrov^{1,2,*} and A. A. Andreev^{1,3,4}

 ¹Department of Physics, St. Petersburg State University, Universitetskaya Naberezhnaya 7/9, Saint Petersburg 199034, Russia
 ²Ioffe Institute, Politekhnicheskaya str. 26, Saint Petersburg 194021, Russia
 ³ELI-ALPS, ELI-HU NKft. Dugonics tér 13, Szeged 6720, Hungary
 ⁴Max-Born Institut, Max-Born Str. 2A, Berlin 12489, Germany

Итоговые замечания

- 🛠 Достоинства схемы:
 - Простая и количественно точная теория
 - Нет принципиальных проблем в экспериментальной реализации (???)
 - Точность порядка 30–50% и может быть увеличена
 - Нет ограничения сверху на величину интенсивности
 - Возможно в том же эксперименте померять излучение электронов, возникающих в процессе туннельной ионизации – дополнительный способ оценки интенсивности

Итоговые замечания

- Достоинства схемы:
 - Простая и количественно точная теория
 - Нет принципиальных проблем в экспериментальной реализации (???)
 - Точность порядка 30–50% и может быть увеличена
 - Нет ограничения сверху на величину интенсивности
 - Возможно в том же эксперименте померять излучение электронов, возникающих в процессе туннельной ионизации – дополнительный способ оценки интенсивности

🛠 Сложности:

- Наиболее точное определение интенсивности требует измерения ионизации 1s² состояний для покрытия широкого интервала нужно использовать различные газы.
- Ограничения сверху на давление газа в пучке жесткие требования к мишенной камере и детектору ионов

СПАСИБО ЗА ВНИМАНИЕ!

С. Попруженко

Институт общей физики им. А.М. Прохорова

M. Ciappina, S Weber S. Bulanov, G. Korn ELI-Beamlines, Czech Republic

Е. Пеганов

Национальный исследовательский ядерный университет МИФИ

T. Ditmire

University of Texas at Austin, USA

P1

Ionization cascades

$$\begin{split} \frac{dc_{30}}{dt} &= -c_{30} \{ \frac{2}{3} [w(\nu_{30}, 1, 0; t) + 2w(\nu_{30}, 1, \pm 1; t)] + 2w(\nu'_{30}, 0, 0; t) \} \\ \mathbf{Kr^{30+}} \\ \frac{dc_{31}}{dt} &= -c_{31} \{ \frac{1}{3} [w(\nu_{31}, 1, 0; t) + 2w(\nu_{31}, 1, \pm 1; t)] - 2w(\nu'_{31}, 0, 0; t) \} + \\ &+ c_{30} \frac{2}{3} [w(\nu_{30}, 1, 0; t) + 2w(\nu_{30}, 1, \pm 1; t)] , \\ \frac{dc'_{31}}{dt} &= -c'_{31} \{ \frac{2}{3} [w(\nu'_{31}, 1, 0; t) + 2w(\nu'_{31}, 1, \pm 1; t)] + w(\nu''_{31}, 0, 0; t) \} + 2c_{30}w(\nu'_{30}, 0, 0; t) \\ \frac{dc_{32}}{dt} &= -2c_{32}w(\nu_{32}, 0, 0; t) + c_{31} \{ \frac{1}{3} [w(\nu_{31}, 1, 0; t) + 2w(\nu_{31}, 1, \pm 1; t)] \\ \frac{dc'_{32}}{dt} &= -\frac{1}{3}c'_{32} [w(\nu'_{32}, 1, 0; t) + 2w(\nu'_{32}, 1, \pm 1; t)] - c'_{32}w(\nu''_{32}, 0, 0; t) + \\ &+ 2c_{31}w(\nu'_{31}, 0, 0; t) + c'_{31} \{ \frac{2}{3} [w(\nu'_{31}, 1, 0; t) + 2w(\nu'_{31}, 1, \pm 1; t)]] , \\ \frac{dc'_{32}}{dt} &= -\frac{2}{3}c''_{32} [w(\nu''_{32}, 1, 0; t) + 2w(\nu''_{32}, 1, \pm 1; t)] + c'_{31}w(\nu''_{31}, 0, 0; t) \end{split}$$

Ionization of krypton at 10¹⁹–10²³W/cm²

