Лазерное ускорение ионов в плазме за счет радиационного трения

Е. Г. Гельфер¹, А.М. Федотов², С. Вебер¹

¹ELI Beamlines, Prague, Czech Republic ²НИЯУ «МИФИ», Москва, Россия

Введение: радиационное трение

 $I \sim 10^{23} - 10^{24} \text{ W/cm}^2$

$$\frac{d\boldsymbol{p}}{dt} = -e\left(\boldsymbol{E} + \frac{1}{c}[\boldsymbol{\nu} \times \boldsymbol{B}]\right) + \boldsymbol{F}_{RF}$$

10 ПВт компрессор, ELI Beamlines

Введение: радиационное трение

 $I \sim 10^{23} - 10^{24} \text{ W/cm}^2$

$$\frac{d\boldsymbol{p}}{dt} = -e\left(\boldsymbol{E} + \frac{1}{c}\left[\boldsymbol{v} \times \boldsymbol{B}\right]\right) + \boldsymbol{F}_{RF}$$

10 Пвт компрессор, ELI Beamlines

Л.Д. Ландау, Е.М. Лифшиц, «Теория поля»

$$F_{RF} \approx -\frac{2}{3} \frac{v}{c} \alpha e E_{cr} \chi^{2}$$

$$\alpha = \frac{e^{2}}{\hbar c}, \qquad E_{cr} = \frac{m^{2} c^{3}}{e \hbar}$$

$$\chi = \frac{e \hbar}{m^{2} c^{3}} \gamma \sqrt{\left(E + \frac{1}{c} [\boldsymbol{v} \times \boldsymbol{B}]\right)^{2} - \frac{1}{c^{2}} (\boldsymbol{E} \boldsymbol{v})^{2}}$$

$$\chi \ll 1$$

Введение: радиационное трение

 $I \sim 10^{23} - 10^{24} \text{ W/cm}^2$

$$\frac{d\boldsymbol{p}}{dt} = -e\left(\boldsymbol{E} + \frac{1}{c}\left[\boldsymbol{v} \times \boldsymbol{B}\right]\right) + \boldsymbol{F}_{RF}$$

Л.Д. Ландау, Е.М. Лифшиц, «Теория поля»

Квантовые поправки

J.G. Kirk, A.R. Bell, I. Arka *PPCF* **51** 085008 (2009)

$$\boldsymbol{F}_{RF} \to g(\boldsymbol{\chi}) \boldsymbol{F}_{RF}$$

$$g(\chi) \approx 1 - \frac{55\sqrt{3}}{16}\chi, \qquad (\chi \lesssim 10^{-2})$$

opaque target

Radiation pressure acceleration

S. C. Wilks et al., PRL 69, 1383 (1992)

Light Sail model

T. Esirkepov et.al. PRL 92, 175003 (2004)

$$\varepsilon_i \sim \frac{\varepsilon_L}{N_i} \sim m_e \frac{a_0^2 T}{\sigma_0}$$
 $T = \omega t_{pulse}, \sigma_0 = \frac{n_0}{n_c} \omega d$
pulse duration areal density

 $\sigma_0 > \sigma_{opaque}$

Порог прозрачности

V. Vshivkov et. al., PoP **5**, 2727 (1998): $\sigma_{opaque} \sim a_0 = \frac{eE_0}{m\omega c}$ E. Gelfer et. al., Phys. Rev. E **101**, 033204: refined threshold

Radiation pressure acceleration

S. C. Wilks et al., PRL 69, 1383 (1992)

Light Sail model

T. Esirkepov et.al. PRL 92, 175003 (2004)

$$\varepsilon_i \sim \frac{\varepsilon_L}{N_i} \sim m_e \frac{a_0^2 T}{\sigma_0}$$
 $T = \omega t_{pulse}, \sigma_0 = \frac{n_0}{n_c} \omega d$
pulse duration areal density

 $\sigma_0 > \sigma_{opaque}$

0.010 No RR 0.008 RRf(E)0.006 0.004 $l\sim 10^{23}$ cm 0.002 CP 0.000 0.0 0.5 1.0 1.5 E (GeV) 3000 400 2500 300 " B a) t=1.7 (T) 2000 $n/n_{\rm c}$ 1500 200 1000 100 500

Как радиационное трение влияет на LS?

넙

M. Tamburini et.al. NJP **12**, 123005 (2010)

Radiation pressure acceleration

S. C. Wilks et al., PRL 69, 1383 (1992)

Light Sail model

T. Esirkepov et.al. PRL 92, 175003 (2004)

$$\varepsilon_i \sim \frac{\varepsilon_L}{N_i} \sim m_e \frac{a_0^2 T}{\sigma_0}$$
 $T = \omega t_{pulse}, \sigma_0 = \frac{n_0}{n_c} \omega d$
pulse duration areal density

 $\sigma_0 > \sigma_{opaque}$

Как радиационное трение влияет на LS?

Εı

M. Tamburini et.al. NJP **12**, 123005 (2010)

M. Chen, A. Pukhov, et. al. PPCF 53, 014004 (2011)

А что, если мишень прозрачная?

Параметры лазера и мишени:

$$I \sim 4.4 \cdot 10^{23} \frac{W}{cm^2}$$
 ($a_0 = 400$), FWHM pulse duration $t_p = 30 \ fs$
 $n = 0.5n_c$, $d = \lambda = 1 \ \mu m$, H^+ ions

Grey – поле лазера, Blue – продольное электрическое поле, Red – плотность электронов, Green – плотность ионов

- Почему радиационное трение может способствовать ускорению?
- Одномерная аналитическая модель радиационноиндуцированного ускорения
- Квантовые и многомерные эффекты
- Толстая мишень: генерация продольных волн

Заключение

E. Gelfer, A. Fedotov, S. Weber, *Radiation induced acceleration of ions in a laser irradiated transparent foil*, NJP, **23** 095002 (2021)

Радиационное трение и ускорение электронов

продольное ускорение не возникает

Радиационное трение и ускорение электронов

Радиационное трение и ускорение электронов

E. Gelfer, A. Fedotov, S. Weber, NJP, 23 095002 (2021)

E. Gelfer, A. Fedotov, S. Weber, NJP, 23 095002 (2021)

Механизмы ускорения

Радиационно индуцированное ускорение (RIA) (пренебрегаем пондермоторным слагаемым) Пондермоторное ускорение (РА) (пренебрегаем РТ индуцированным слагаемым)

E. Gelfer, A. Fedotov, S. Weber, NJP, 23 095002 (2021)

заряд внутри лазерного импульса

заряд внутри лазерного импульса

Максимальная энергия ионов

Средняя энергия ионов

$$< \mathcal{E}_{i}(t) > \sim \frac{1}{\sigma_{0}} \int_{0}^{t} \sigma_{p}(t') \frac{\sigma_{p}(t')}{2} dt'$$
num. of accelerating average accelerating field
$$< \mathcal{E}_{i}^{(RIA)}(t) > \approx m_{e}c^{2} \begin{cases} \frac{\sigma_{0}t}{2}, & t < t_{bd} \\ \frac{\mu g a_{0}^{4}T}{4} \left(2 - \frac{t}{t_{bd}}\right), t_{bd} < t < 2t_{bd} \\ \frac{3\mu g a_{0}^{4}T}{8}, & t > 2t_{bd} \end{cases}$$

 $a_0 = 800 \ (l \approx 1.8 \cdot 10^{24} \text{ W cm}^{-2})$, CP, FWHM 30 fs, $n = 0.5 \ n_c$, $d = 1 \mu m$

Средняя энергия ионов

 $a_0 = 800 \ (I \approx 1.8 \cdot 10^{24} \text{ W cm}^{-2})$, CP, FWHM 30 fs, $n = 0.5 \ n_c$, $d = 1 \mu m$

В ультрарелятивистском пределе

 $a_0 = 600 \ (I \approx 10^{24} \text{ W cm}^{-2}), \text{CP},$ FWHM 30 fs, $n = 0.5 \ n_c, d = \lambda = 1 \mu m$

$$g(\chi) \approx 0.84$$

Многомерные эффекты

- Дифракция лазера: a_0 падает со временем
- Пондермоторная сила выталкивает электроны в поперечном направлении и уменьшает σ_p
- Зазор между электронным и ионным уменьшает ускоряющую силу

Многомерные эффекты

- Дифракция лазера: *a*₀ падает со временем
- Пондермоторная сила выталкивает электроны в поперечном направлении и уменьшает σ_p
- Зазор между электронным и ионным слоями уменьшает ускоряющую силу

Возможное решение: увеличить σ_0 , чтобы избежать полного разделения зарядов и сделать t_{bd} меньше времени дифракции (но $\sigma_0 < \sigma_{opaque}$)

 $\tau_{bd} = \frac{\mu a_0^4 T}{2\sigma_0}$ $\varepsilon_{i,max}^{(RIA)} \sim \sigma_0 \tau_{bd} \quad 23$

Многомерные эффекты

 $a_0 = 600 \ (I \approx 10^{24} \text{ W cm}^{-2}), \text{CP},$ FWHM 30 fs, $n = 16 \ n_c, w = 6\lambda, d = \lambda = 1 \mu m$

Толстая мишень: продольные плазменные волны

 $I \sim 2.5 \cdot 10^{23} \frac{W}{cm^2}$ (a₀ = 300), CP, FWHM 125 fs, E. Gelfer, N. Elkina, A. Fedotov, Scientific Reports 8, 6478 (2018) $n = 0.01 n_c$, $\lambda = 1 \ \mu m$, неподвижные ионы E.G. Gelfer, A.M. Fedotov, S. Weber, PPCF 60, 064005 (2018) 10^{0} n_{e}/n_{c} 10^{0} n_e/n_c $20 \cdot a_x, a_y$ time: 1950 fs $20 \cdot a_x, a_y$ time: 4520 fs (a) (b) **RF ON RF ON** 200 200 100 100 10^{-1} 10^{-1} 0 -100-100-200 -200 x/λ x/λ 0 600 -200200 400 800 1000 1200 -200200 400 600 800 1200 0 1000 0 $20 \cdot a_x, a_y$ $n_e/n_{
m c}$ $n_e/n_{
m c}$ time: 4520 fs $20 \cdot a_x, a_y$ time: 1440 fs 10⁰г 10^{0} (c)(d) **RF OFF RF OFF** 200 200 100 100 10-1 10^{-1} 0 0 -100-100-200 -200 x/λ x/λ 0^L 600 200 400 800 1000 1200 -200-200200400 600 800 1000 1200 0

Толстая мишень: продольные плазменные волны

E.G. Gelfer, A.M. Fedotov, S. Weber, PPCF 60, 064005 (2018)

 $I = 1.7 \cdot 10^{23} W/cm^2$, FWHM 150 fs, $w \approx 2\lambda$, $n = n_c$, $\frac{238}{92} U^{80+}$ ions, $P_{tot} \approx 10 PW$

продольное электрическое поле

- Мы исследовали два возможных механизма ускорения тонкой прозрачной пленки сверхинтенсивным лазерным импульсом: радиационно индуцированный (RIA) и пондермоторный (PA).
- В ультрарелятивистском случае RIA существенно эффективнее (в смысле максимальной/средней энергии ионов) РА и других механизмов ускорения (LS) из-за более сильной зависимости энергии ионов от a₀ [a₀⁴]. Одномерная модель, в рамках которой получена эта зависимость, прекрасно согласуется с численными расчетами.
- Квантовые поправки относительно невелики и не растут при увеличении интенсивности лазера.
- Многомерные эффекты ограничивают эффективность RIA по сравнению с одномерной моделью. Тем не менее, эффект остается существенным и в многомерных расчетах.

E. Gelfer, A. Fedotov, S. Weber, NJP, 23 095002 (2021)