Оптимизация генерации термоядерных нейтронов из крупных нанокластеров при облучении ультракоротким лазерным импульсом

Д.А. ГОЖЕВ, С.Г. БОЧКАРЕВ, М.Г. ЛОБОК, А.В. БРАНТОВ, В.Ю. БЫЧЕНКОВ

Физический институт им. П.Н. Лебедева РАН, Москва, Россия

Введение

Лазерное ускорение заряженных частиц и генерация вторичного ЭМИ являются предметом большого интереса для фундаментальных исследований и возможных применений в ядерной физике, в областях ИТС, радиографии, ядерной медицине и ядерной фармакологии, а также представляет интерес для лабораторной астрофизики и физики экстремального состояния вещества.

S. Namba et al., Phys. Rev. A 73, 013205 2006

Для повышения эффективности генерации частиц используют нано- и микро структурированные мишени, мишень с ограниченной массой и кластерные мишени.

Введение

Выход из нанокластеной среды ~10⁴ -10⁵ нейтр./Дж

T. Ditmire et al., Nat. Phys. Nature **398**, 489 (1999)

Выход из микро-волосковой мишени свыше 10⁶ нейтр./Дж

Параметры кластерной мишени необходимо оптимизировать!

2

Laser energy (J)

Введение

Виды микронных кластерные мишени

- Суб-микронная металлическая пыль, суб-микронные частицы (золото, серебро и тд)
- Жидкие струйные/капельные мишени (тяжелая вода)
- Суб-микронные капли (атомные и молекулярные газы Ar, Kr, Xe, CO₂, CD₄);

Условия для оптимального нагрева коротким лазерным импульсом

 $s - d \sim \lambda$, $d \ll \lambda - d$

d – диаметр суб-микронного кластера,
 s – расстояние между центрами

Кластерная мишень (тяжелые ионы), электрическое поле и электронные спектры

Кластерная мишень (D_2O), 3D PIC

Лазерное излучение:

Линейно поляризованная плоская волна $\lambda = 1$ мкм $\tau_{FWHM} = 30 \, \phi c$ $I_L = 2 \times 10^{18} \frac{BT}{cM^2} \Rightarrow$ $a_L = 0.85 \sqrt{I \lambda_L^2 / I_{18} \lambda_1^2} \approx 1.2$

 $W_L = I \tau \pi D^2 / 4 = 1$ Дж

Параметры моделирования:

Размер области : $12\lambda \times 6\lambda_L \times 6\lambda_L$ Пространственный шаг : $\frac{\lambda}{200} \times \frac{\lambda}{200} \times \frac{\lambda}{100}$ Частиц в ячейке : 8 Время расчёта : ~ 300 фс

Электронная плотность кластеров (n_e) : 200 n_c Диаметр (d): $0.05 - 0.4\lambda_L$ Средняя электронная плотность $(n_{e,av})$: $0.03 - 0.48 n_c$ $n_{e,av} = \frac{\pi d^3}{6s^3} n_e$, s – среднее расстояние между центрами кластеров

Граничные условия

продольный - поглощающие

поперечные - периодические

Тип мишени:

 D_2O

Схема моделирования (D_2O)

Оценки

$$E_{L} \sim 4eN_{h}/d^{2}$$

$$N_{h} \approx \frac{1}{2}a_{0}n_{c}d^{2}\lambda = \frac{\pi}{2}a_{0}\frac{d^{2}}{\lambda r_{e}}$$

$$r_{e} = \frac{e^{2}}{m_{e}c^{2}} \approx 2.8 \ 10^{-13} \ \text{см}$$

$$ECЛИ T_{h} > U = e^{2}N_{h}/d, \text{ то все электроны способны улететь в вакуум}$$

$$T_{h} = T_{pond} \approx m_{e}c^{2}\left(\sqrt{1 + a_{0}^{2}/2} - 1\right) \approx 160 \ \text{к} \Rightarrow B$$

$$d < 2\left(\sqrt{1 + a_{0}^{2}/2} - 1\right)\lambda/\pi a_{0} \approx 0.17\lambda$$

$$\epsilon_{max,D c} = \frac{2r_{e}}{d}N_{h}m_{e}c^{2} = m_{e}c^{2}a_{0}\pi d/\lambda$$

$$T.K. \ 1/\omega_{D} < \tau_{L}$$

$$\omega_{D} = \sqrt{4\pi e^{2}n_{h}/M_{D}} - \mu_{OHHO - ПЛАЗМЕННАЯ ЧАСТОТА}$$

$$d_{eff} \sim d(1 + \omega_{D}\tau_{L})$$

$$IPMMEP:$$

$$A_{L} = 0.05:$$

$$N_{h} \approx 2 \times 10^{6}$$

$$N_{h}/(\pi d^{3}/6) \sim 25n_{c}, \omega_{D}\tau_{L} \sim 5,$$

$$\epsilon_{max,D c} \approx 500 \ \text{k} \Rightarrow B$$

Оценки

Если $T_h < U = e^2 N_h/d$, то большая часть электронов не может покинуть кластер

$$d > 2\left(\sqrt{1+a_0^2/2}-1\right)\lambda/\pi a_0 \sim r_E,$$

$$\epsilon_{max,D} \approx 2T_h \ln^2 \left(2 t_{acc} \omega_D / \sqrt{2e_N} \right) \approx 2T_h \ln^2 \left(\sqrt{2/e_N} \psi \right) *$$

Применимо при $\psi \gg 1$, т.е. при квазинейтральном режиме расширение плазмы

* A.V. Gurevich, A.P. Meshcherkin, Fizika plazmy 9, 955 (1983)
 P. Mora, Phys. Rev. Lett 90, 185002 (2003).

 $t_{acc} = d/c_s$

 $\psi = d/\lambda_{Dh}$

 $r_E = \lambda / (2\pi) a_0$ - длина осцилляции электрона в лазерном поле

сs-звуковая скорость

Пример: Для *d / λ* = 0.4: *є_{max,D} ≈* 1.4 МэВ

$$L_{dep}^{Teor} \cong c\tau_L a_0 n_c / (8\bar{n}_e)$$

формула Декера, учитывает потери лазерного излучения на пондеромоторное «расталкивание» электронов в межкластерном пространстве

\bar{n}_e - средняя плотность «вырванных» электронов

C.D. Decker, et al, Phys. Plasmas 3, 2047 (1996).

Теоретически сложно оценить $\bar{n}_{\rho}!$

В РІС расчете

Если \bar{n}_e взять оценить из расчета и подставить в L_{dep}^{Teor} , то $L_{dep}^{Teor} \approx L_{dep}^{PIC}$

Оценки

$$L_{dep}^{Teor} \approx \frac{ac\tau n_{cr}}{8\bar{n}_{e}}$$

$$L_{Mie} = \frac{1}{n_{cl}\sigma_{Mie}}$$

$$L = \min(L_{dep}^{Teor}, L_{Mie}, X_{R}) = L_{dep}$$

$$X_{R} = \pi D^{2}/\lambda \approx 6600\lambda$$

$$Ipumep:$$

$$L_{Teor} \approx \frac{ac\tau n_{cr}}{8\bar{n}_{e}} = 84\lambda$$

$$L_{Mie} = \frac{1}{n_{cl}\sigma_{Mie}} = 400\lambda$$

$$n_{cl} = 1/s^{3}$$
- плотность кластеров

11

Спектр электронов

 $T_h \ge T_{pond} \approx 160 \text{ keV}$

Более высокая температура горячих электронов связана с стохастической динамикой в сложных кулоновских полях!

Нормированный спектр электронов в момент времени, когда пик лазерного импульса выходит из расчетной области

Чем больше кластер, тем больше Кулоновское поле!

Спектр дейтронов

Для *d* / λ = 0.05:

 $dN/d\epsilon \propto \sqrt{\epsilon}$ - кулоновский взрыв

 $\epsilon_{max,DC} \approx 500$ кэВ

Для *d* / λ = 0.4:

 $\epsilon_{max,D} \approx 1.4$ МэВ

Самоподобие спектра дейтронов при разных І

Самоподобие спектра дейтронов при разных І

Суммарный спектр дейтронов

Энергия горячих дейтронов в зависимости от зоны

Энергия дейтронов нормированная на энергию первой зоны с $\epsilon > 100$ кэВ в зависимости от номера зоны k

Число горячих дейтронов в зависимости от зоны

Число дейтронов с энергией больше 50 кэВ в зависимости от номера зоны k

 $N_{D,k} = N_{D,1} \left(1 - C_D (k-1) \Delta x / L_{dep} \right)$

*С*_{*D*} - коэффициент, зависящий от *d*

Число горячих дейтронов и коэффициент конверсии

Спектр нейтронов(GEANT4)

Энергетическое распределение DD-нейтронов для $d/\lambda = 0.2$, $n_{\rm e,av}/n_c = 0.06$ вперед (красным) и назад (синим)

Выход нейтронов (GEANT4)

Число нейтронов в зависимости от номера зоны *k*

Выход нейтронов в зависимости от диаметра при различных средних плотностях

Оценка выхода нейтронов

Выход нейтронов на один ускоренный ион, образующийся в реакции с мишенью с плотностью n_a :

$$M_n = \int_0^1 d\xi \,\xi^n f(\xi) \qquad \qquad m_e^2 c^4 \beta = \frac{m_e}{2M^*} \frac{\sigma_0}{\pi r_e^2} \frac{1}{Z_a} \approx 1.8 \cdot 10^{-4} \qquad \qquad \kappa \approx 0.01$$

22

Сравнение выхода нейтронов

$$Y_{tot} = \frac{N_{tot}}{N_{D0}} = \sum_{k=1}^{l} \int_{0}^{\epsilon_{\max,k}} d\epsilon \frac{dN_{D,k}}{d\epsilon} \approx \frac{N_{D0}}{l} \int_{0}^{1} d\xi f(\xi) \sum_{k=1}^{l} Y(\xi \epsilon_{\max,k})$$

Выводы

- Был разработан новый подход к моделированию взаимодействия лазерного импульса с газово-микро-капельной средой, основанный на разделение области моделирования на последовательные зоны, в которых максимальную интенсивность лазерного излучения можно считать постоянной, что позволяет рассчитать энергии электронов, ионов и нейтронов в большом объеме взаимодействия по всей области поглощения
- Был оптимизирован выход высокоэнергетичных дейтронов и коэффициент конверсия лазерной энергии в такие дейтроны при взаимодействии субрелитивистского фемтосекундного лазерного излучения с кластерами субмикронного размера путем изменения диаметров кластеров и средней плотности мишени.
- В оптимальном случае выход дейтронов с энергией выше 300 кэВ достигает значения порядка 10¹² дейтронов на один Дж вложенной энергии, а конверсия лазерной энергии в дейтроны с энергией более 100 кэВ достигает почти 10%.
- Также был оптимизирован выход DD нейтронов в кластерной среде. Было показано, что выход нейтронов достигает значения выше 10⁶ нейтр./Дж.

Спасибо за внимание!

- D.A. Gozhev, et al, JETP Letters, **114** (4), 200 (2021).
- D.A. Gozhev, et al, Bulletin of the Lebedev Physics Institute **49**, 42 (2022).

