

ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ "РОСАТОМ"

ФГУП "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВТОМАТИКИ им. Н.Л.Духова"

ПРОЕКТ XCELS

Сверхъяркий лазерный источник гамма излучения на основе бетатронного механизма. Диагностика экстремального света.

О. Е. Вайс

СВЕРХЪЯРКИЙ ЛАЗЕРНЫЙ ИСТОЧНИК ГАММА ИЗЛУЧЕНИЯ НА ОСНОВЕ БЕТАТРОННОГО МЕХАНИЗМА

О. Е. Вайс, М. Г. Лобок, В. Ю. Быченков

 ¹ Физический институт им. П.Н.Лебедева РАН (ФИАН)
 ² Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова (ВНИИА)

Постановка эксперимента

Режим релятивистского самозахвата лазерного импульса

Условие согласования радиуса лазерного пучка, безразмерной амплитуды поля и плотности мишени:

$$R = \alpha \frac{c\sqrt{a_0}}{\omega_p} = \frac{\alpha c}{\omega_l} \sqrt{\frac{a_0 n_c}{n_e}}$$

Дифракционная расходимость уравновешивается релятивистской нелинейностью — радиус сохраняется на протяжении многих рэлеевских длин.

Платообразный спектр ускоренных электронов. Высокий заряд быстрых частиц (десятки нКл).

Схема генерации синхротронного излучения

Бетатронные осцилляции электронов в поперечном поле плазменной мишении при ускорении частиц ее продольным полем генерация синхротронного излучения.

Моделирование эксперимента

3D-PIC моделирование (VSim)

Параметры расчетов:

- лазерный импульс ($\lambda_l = 0.91$ мкм): линейная поляризация, W = 400 Дж, P = 15 ПВт, $\tau = 25$ фс, $D_F = 10$ мкм, $I_p = 1.32 \times 10^{22}$ Вт/см² ($a_0 = 89$)
- мишень: плотность $0.511n_c$ ($n_c = 1.34 \times 10^{21}$ см⁻³), толщина 455 мкм
- моделирование: движущееся окно $X \times Y \times Z = 58\lambda \times 58\lambda \times 58\lambda$ (разрешение: $0.04\lambda \times 0.1\lambda \times 0.1\lambda$)

Треки 3000 случайных частиц с энергией выше 500 МэВ

Формулы расчета вторичного излучения по трекам частиц:

мгновенная мощность угловое распределение мощности: (релят. обобщ. формулы Лармора):

$$P = \frac{2}{3} \frac{e^2}{c} \gamma^6 \left(\dot{\beta}^2 - \left[\beta \times \dot{\beta} \right]^2 \right),$$

$$\frac{dP}{d\Omega} = \frac{e^2}{4\pi c} \frac{\left\| \left[\mathbf{n} \times \left[(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right] \right] \right\|^2}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^5},$$

спектральная плотность мощности излучения:

$$\frac{d^2 W}{d\Omega d\omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{\infty} \frac{\left[\mathbf{n} \times \left[(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right] \right]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^2} e^{i\omega \{t - \mathbf{n} \cdot \mathbf{r}(t)/c\}} dt \right|^2$$

Распределение плотности частиц внутри ускоряющей плазменной полости для параметров, ожидаемых на XCELS

Длина сгустка электронов свыше 10 мкм → возможно некогерентное суммирование характеристик вторичного излучения

Характеристики ускоренного пучка электронов

Энергетический спектр электронов.

Динамика энергии электронов. Мгновенная излучаемая мощность.

Q_{>500МэВ}≈ 40 нКл

длина дефазировки около 200 мкм

р_z и р_y компоненты импульса частиц при их ускорении плазменной полостью вдоль оси х

≈ (2γ)⁻¹ ~ 10⁻⁴ – угол между направлением движения частицы и направлением, в котором происходит наиболее мощное излучение → направление излучения определяется направлением движения частицы

Угловые распределения синхротронного излучения

Угловое распределение излученной энергии

θ-распределение спектров синхротронного излучения

в направлении поляризации:

 $\varphi = 0^{\circ}$

Спектр фотонов синхротронного излучения в направлении распространения лазерного импульса: (ϑ, ϕ) =(0, 0).

Характеристики:

- размер 2.5 мкм
- длительность генерации 50 фс
- максимум энергии переизлучается на 2.5 МэВ
- ширина спектра около 10 МэВ

2.5 МэВ 7×10 ²³ 10 МэВ 8×10 ²²	частота излучения	яркость, ф./с/мм²/мрад²/0.1%b.w.
10 МэВ 8×10 ²²	2.5 МэВ	7×10 ²³
	10 МэВ	8×10 ²²

Требования к эксперименту

- Выполнение условия согласования интенсивности излучения, диаметра пятна и плотности мишени
- Устойчивый режим: относительное отклонение характеристик излучения меньше относительной ошибки параметров эксперимента [Lobok M. G., Andriyash I. A., Vais O. E., Malka V., Bychenkov V. Yu. Phys. Rev. E, 104, L053201 (2021)]
- Мишень: газовая ячейка, газовая струя высокой плотности либо мишень, образующаяся при предварительной гомогенизации пенной мишени [Rosmej O. N. et al. New J. Phys., 21, 043044 (2019)]
- Для мишени с преплазмой положение фокуса и диаметр фокального пятна должны быть согласованы с масштабами неоднородности [Bychenkov V. Yu. and Lobok M. G., JETP Lett. 114, 579 (2021)]

Заключение

- Устойчивый режим генерации яркого синхротронного рентегновского излучения
- Для лазерного импульса мощностью 15 ПВт, длительностью 25 фс при фокусировке в 10 мкм характеристики источника:
 - угловая направленность 75-150 мрад,
 - критическая частота около 10 МэВ (максимум энергии в 2.5 МэВ),
 - яркость превышает 10²³ фотонов/с/мм²/мрад²/0.1%b.w.

ДИАГНОСТИКА ЭКСТРЕМАЛЬНОГО СВЕТА

О. Е. Вайс^{1,2}, К. А. Иванов^{1,3}, И. Н. Цымбалов³, Н. Д. Бухарский⁴, В. Ю. Быченков^{1,2}, Ф. А. Корнеев^{1,4}, А. Б. Савельев-Трофимов¹

1 Физический институт им. П.Н.Лебедева РАН (ФИАН)

² Всероссийский научно-исследовательский институт автоматики им.Н.Л. Духова (ВНИИА)

³ Московский государственный университет им. М.В.Ломоносова (МГУ)

⁴ Национальный исследовательский ядерный университет «МИФИ»

Постановка эксперимента

Моделирование эксперимента

Лазерный импульс ($\lambda_l = 0.91$ мкм): линейная поляризация, мощность 15 ПВт, $\tau = 25$ фс Первоначальная область расположения частиц: $x:y:z = 2.3D_F: 2.3D_F: 7.6D_F^2$

Метод тестовых частиц:

• электроны

$$\frac{dm_e v\gamma}{dt} = e\left(E + \frac{[v \times B]}{c}\right)$$
$$\frac{dR}{dt} = v,$$

• протоны

$$\frac{dp_{drift}}{dt} = F_p = -\frac{q^2}{4m\omega_0^2}\nabla|E|^2$$

Пиковые интенсивности лазерного излучения мощностью 15 ПВт

<i>D_F</i> , мкм	<i>I_F</i> , 10 ²² Вт/см ²
2.5	21.93
3.6	9.99
4.7	5.91
5.9	3.78
7.1	2.63

Характерные распределения частиц, ускоренных лазерным импульсом (15 ПВт, 25 фс)

Распределение электронов

Распределение протонов

фокусировка в пятно диаметром 2.5 мкм

Интегральные спектры электронов

Заданная мощность лазерного импульса (15 ПВт)

Заданный диаметр (2.5мкм)

Угловые спектры электронов с энергиями 1 – 20 МэВ

Заданная мощность лазерного импульса (15 ПВт)

Заданный диаметр (2.5мкм)

Характеристики протонных спектров

Принципиальная схема восстановления пространственного профиля лазерного импульса по спектрально-угловым распределениям частиц при помощи нейронной сети

Зависимость формы распределений частиц от пространственных характеристик лазерного импульса → восстановление фокального распределения лазерного импульса

Требования к эксперименту

- Плотность газовой струи (малость сил взаимодействия между частицами): < 10¹⁸см⁻³
- Эксперимент с оценкой угловой ширины протонных спектров: *nl* < 10¹⁵ см⁻², где *n* - концентрация газа, *l* - толщина газовой струи, т.е. 10¹⁶см⁻³ для струи 1 мм
- Детектирование частиц:
 - полупроводниковые детекторы матричного типа (Medipix TimePix2&3) высокая чувствительность к одиночным частицам, энергетическое разрешение 10%, но использование защитного фильтра повышает минимальную энергию детектирования
 - позиционно-чувствительный детектор (времяпролетные спектрометры с микроканальной пластиной и люминофором)

- измерение средней интенсивности по выстрелам: спектрально-угловые распределения как электронов, так и протонов
- измерение интенсивности в каждом выстреле: угловые распределения <u>электронов</u> с энергиями от 1 до 20 МэВ
- диапазоны энергий частиц:
 - электроны: до 150 МэВ
 - протоны: от 1 кэВ до 1 МэВ
- углы вылета частиц:
 - электроны: < 40°
 - протоны: в узком конусе вдоль 90°

СПАСИБО ЗА ВНИМАНИЕ!

