Концентрация и распространение сверхсильных лазерно-генерируемых ТГц полей на микропроволочной мишени

Куратов А.С., Брантов А.В., Быченков В.Ю.

ВНИИА, ФИАН

2023

(本間) (本臣) (王)

Терагерцовое (ТГц) излучение

Электромагнитный спектр

Характеристики ТГц излучения

- Frequency: $\nu = 1$ THz = 1000 GHz
- Angular frequency: ω = 2πν = 6.28 THz
- Period: $\tau = 1/\nu = 1$ ps
- Wavelength: $\lambda = c/\nu = 0.3 \text{ mm} = 300 \ \mu\text{m}$
- Photon energy: $h\nu = \hbar\omega = 4.14 \text{ meV}$
- Temperature: $T = h\nu/k_B = 48$ K

< (T) >

Источники Мощного ТГц излучения

^aR.Kulipanov, et al., Ter. Sci. Tech. 1, 2 (2008) ^bJ.Fülöp et al., Opt. Exp. 20155, (2014)

^CC.Vicario et al., Opt.Lett. 39, 23 (2014) ^dK.Kim et al., Nat.Phot. 2, 605 (2008)

・ロト ・四ト ・ヨト ・ヨト

2023

3/14

Источники Мощного ТГц излучения

^aI.Dey, et al., Nat. Comm. 8:1184 (2017) ^bZ.Jin et al., PRE. 94, 033206 (2016)

^CZ.Wu et al., Rev. Sci. Instrum. 84, 022701 (2013)

< ロ > < 回 > < 回 > < 回 > < 回 >

2023

4/14

Сравнение источников

TABLE I. Comparison with state-of-the-art high-power THz sources, including a THz free-electron laser (FEL), TR in a linear accelerator (LINAC), optical rectification (OR) in organic crystals and lithium niobate (LiNbO₃), and laser-induced plasmas in air, liquids, and solids. All sources are broadband except the FEL. The data for existing sources are referenced from the previously reported experimental records.

		Peak power (GW)	20-dB bandwidth (THz)	Brightness temperature (10 ¹⁹ K)	Laser-THz conversion efficiency
FEL [15]		0.001	0.007	1	
LINAC (TR) [16]		2-4	3-10	1-6	
Organic crystal (OR) [18,19]		4	3	10	3%
LiNbO ₃ (OR) [20]		0.2	0.4	2	0.77% (3.8%[21])
Air plasma [25,26]		0.1	10	0.02	0.01% (0.1% [27])
Liquid plasma [28]		0.04	15	0.005	0.1%
Solid plasma	JETI [33] This work	$1 (0.08-1.2) \times 10^3$	1.5 (0.5–5)	$\substack{0.4 \\ (0.9-1.9) \times 100}$	0.08% (0.16–0.29)%

Рис.: Сравнение источников мощного ТГц излучения. Лазеры на свободных электронах, Линейные ускорители, Оптическое выпрямление (органические кристаллы, наклонный волновой фронт, "газовая "жидкостная"и "твердотельная"плазма. Таблица взята из работы¹)

イロン イロン イヨン イヨン

¹G.Liao et al., PRX. 10, 031062 (2020)

Лазер-плазменный источник

- 🔕 Лазер
- О Металлическая фольга
- Высокоэнергетичные электроны

- 4 回 ト 4 回 ト 4 回 ト

- ТГц излучение
- 🗿 ПЭВ

Преимущества проволочных мишеней

- Коллимация
- Транспортировка
- Генерация заряженных частиц и взаимодействие с ними
- Усиление полей

< 同 ▶ < 三 ▶

Генерация сильных ТГц полей из микропроволочных мишений

- Метод конечных разностей во временной области
- Метод частиц-в-ячейках

・ロト ・四ト ・ヨト ・ヨト

Куратов А.С., Брантов А.В., Быченков В.НКонцентрация и распространение сверхсильнь

Коллимирование энергии поверхностных волн

Моделирование методом конечных разностей во временной области, для 25 фс. длительности лазера и для интенсивности 10^{20-21} Вт/см²

Распределение модуля электрического поля в двух плоскостях, Зеленой пунктирной линией показано расположение плоскости сечения, представленной на правом рисунке.

Изменение нормированного максимума модуля электрического поля, для поля распространяющегося в вакууме и для поля, распространяющегося вдоль проволоки.

(日) (同) (日) (日)

Распространение энергии вдоль проволоки

Движение электромагнитной волны вдоль изогнутой проволоки. Рисунки (а)-(г) показывают распределение модуля электрического поля вблизи поверхности проволоки в различные моменты времени, моменты времени отмечены на нижнем рисунке пунктирными линиями. Рисунок (д) показывает изменение максимума модуля электрического поля с течением времени.

(日) (同) (日) (日)

Движение электронов вдоль проволоки

Серия экспериментов методо частиц в ячейках с длительностями лазера $\sim 10-100~{\rm cc.}$ и интенсивностями $10^{19-21}~{\rm Bt/cm^2}$

Пространственное распределение плотности электронов в момент времени 520 фс. и 780 фс. Длина прогретой области L не сколько размером фокального пятна, сколько длительностью импульса и временем адиабатического остывания электронов. Для $\tau = 50$ фс., L = 50 мкм.; $\tau = 100$ фс., L = 70 мкм.; $\tau = 300$ фс., L = 100 мкм.

Распределение тока j_y вдоль проволоки. Двумерное распределение тока при r = R.

<ロ> (四) (四) (三) (三)

Движение электронов вдоль проволоки

Серия экспериментов методо частиц в ячейках с длительностями лазера $\sim 10-100~{\rm dc.}$ и интенсивностями $10^{19-21}~{\rm Bt/cm^2}$

Плотность электронов вылетающих из области взаимодействия (светлый контур), и амплитуда электричекого поля (темный контур).

Амплитуды поперечного $\sqrt{E_x^2 + E_y^2}$ (слева) и продольного $|E_y|$ (справа) электрического поля в единицах В/м, распространяющегося вдоль поверхности мишени.

<ロ> <問> < 回> < 回> < 回>

Усиление поля

Моделирование методом конечных разностей во временной области для конической мишени.

< (T) >

Выводы

- Проводящие проволочные мишени являются частью источника генерации высокоинтенсивного ТГц излучения, а так же оптическим элементом позволяющим направлять и конфигурировать поле
- Совместно с образованием электромагнитных импульсов образуются сгустки высокоэнергетичных электронов удерживаемых и двигающихся с э/м. импульсами, которые полезны для различных приложений.

A (1) × A (2) × A (2) ×