
Energy-Conserving Theory of the Blowout Regime of Plasma Wakefield

A. Golovanov ,1,2,* I. Yu. Kostyukov ,2,3 A. Pukhov ,4 and V. Malka 1

1Weizmann Institute of Science, 7610001 Rehovot, Israel
2Institute of Applied Physics RAS, 603950 Nizhny Novgorod, Russia

3Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
4Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

(Received 28 August 2022; accepted 6 February 2023; published 7 March 2023)

We present a self-consistent theory of strongly nonlinear plasma wakefield (bubble or blowout regime of
the wakefield) based on the energy conservation approach. Such wakefields are excited in plasmas by
intense laser or particle beam drivers and are characterized by the expulsion of plasma electrons from the
propagation axis of the driver. As a result, a spherical cavity devoid of electrons (called a “bubble”) and
surrounded by a thin sheath made of expelled electrons is formed behind the driver. In contrast to the
previous theoretical model [W. Lu et al., Phys. Rev. Lett. 96, 165002 (2006)], the presented theory satisfies
the energy conservation law, does not require any external fitting parameters, and describes the bubble
structure and the electromagnetic field it contains with much higher accuracy in a wide range of parameters.
The obtained results are verified by 3D particle-in-cell simulations.
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Plasma accelerators are promising for achieving high
acceleration gradients and pave the way to creating com-
pact particle accelerators [1–3] by using the strong longi-
tudinal electric field (wakefield) of plasma wake waves to
accelerate particles to high energies. With the wake phase
velocity being close to the speed of light, the accelerated
relativistic particles can stay in the accelerating phase of the
wake and efficiently gain energy. The two methods of
plasma acceleration are laser-wakefield acceleration
(LWFA) in which a short intense laser pulse is used to
drive a wake wave in an underdense plasma [4] and plasma-
wakefield acceleration based on particle drivers [5]. For
femtosecond laser pulses with high enough intensity, which
are currently available at many laser facilities, the laser-
plasma interaction happens in the strongly nonlinear [6]
regime in which the laser pulse completely expels plasma
electrons from its propagation axis, leading to the for-
mation of a spherical cavity (called a “bubble”) devoid of
plasma electrons [7]. This promising regime for electron
acceleration allows high accelerating gradients, facilitates
self-injection, and leads to the generation of quasimonoe-
nergetic bunches without an external electron source [8–
10]. The current record energy achieved in LWFA in this
regime is 8 GeVat a distance of 20 cm [11]. The same effect
of a bubble formation is observed in plasma-wakefield
acceleration with dense bunches (see Fig. 1) [12].
Because of the highly nonlinear nature of the interaction,

theoretical description of the bubble or blowout regime of
plasma wakefield remains challenging. Several early phe-
nomenological models were able to qualitatively describe
the properties of the bubble regime [13,14]. A major

breakthrough was achieved in the model proposed by Lu
et al. [15,16] where the equation describing the boundary
of the bubble was derived. Later this model has seen several
important developments, including estimations of the beam
loading influence [17], alternative shapes for the electron

FIG. 1. Schematic depiction of a bubble excited by an electron
driver (purple) in a plasma. Planar projections show the distri-
butions of the electron density ρe in plasma and the longitudinal
electric field Ez (blue corresponds to regions of acceleration
Ez < 0, red to deceleration Ez > 0) in the central slices.
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sheath [18,19], generalization to plasmas with transverse
inhomogeneous profiles [20,21], a multisheath model that
more accurately fits numerical simulations [22], and a
method for calculating the bubble excitation by an electron
driver [23]. However, these models either require fitting
parameters (such as the thickness of the electron sheath at
the boundary of the bubble) which can be only estimated
from numerical simulations or are applicable only in some
limiting cases.
In this Letter, we propose a different approach based on

the energy conservation law. We derive a new equation for
the boundary of the bubble and demonstrate that it more
accurately describes the bubble regime over a wide range of
parameters. This new approach does not rely on additional
fitting parameters, and the better suitability is due to its
energy-conserving properties. For the sake of coherence,
we also extend the new approach to the bubble excitation
by an electron bunch.
The plasma wakefield consists of two components

carrying energy: the electromagnetic (EM) field and elec-
trons. We consider noncollisional plasmas and immobile
ions, thus neglecting their contribution to the total energy.
The electromagnetic field energy conservation law corre-
sponds to Poynting’s theorem,

∂WEM

∂t
þ ∇ · SEM ¼ −j · E; ð1Þ

where WEM ¼ 1
2
ðE2 þ B2Þ is the EM energy density,

SEM ¼ E × B is the Poynting vector, and j is the spatial
distribution of the current charge density. Assuming there
are no collisions, a similar equation can be written for
plasma electrons,

∂We

∂t
þ ∇ · Se ¼ je · Eþ 1

2

∂ha2i
∂t

neγ−1; ð2Þ

where We ¼ neðγ̄ − 1Þ is the electron energy density, and
Se ¼ neðp̄ − v̄Þ is the energy current. Here, the horizontal
bars correspond to averaging over the electron distribution
function in the momentum space. We use the ponder-
omotive description for the laser driver in which its force
depends on the time-averaged square ha2i of dimensionless
laser amplitude a ¼ eE=ðmcωLÞ, where ωL is the laser
frequency [24]. Fields E and B and therefore the energy
density WEM thus correspond only to plasma fields.
All equations in this Letter are written in plasma units, in

which time is normalized to ω−1
p , coordinates to c=ωp,

electric and magnetic fields to mcωp=e, velocities to c,
momenta to mc, electron energies to mc2, electron density
to np, wherem is the electron mass, e > 0 is the elementary
charge, c is the speed of light, np is the unperturbed
electron density, and ωp ¼ ð4πe2np=mÞ1=2 is the electron
plasma frequency. The dimensional values here are given in
Gaussian units.

As the wakefield driver moves along the z direction
with the speed close to the speed of light and evolves
slowly, we can use the quasistatic approximation [25] and
replace the time t and the longitudinal coordinate z with
the copropagating coordinate ξ ¼ t − z. In this case, the
energy conservation law for the total energy W ¼ WEM þ
We and total energy flow S ¼ SEM þ Se can be
written as

∂W̃
∂ξ

þ ∇⊥ · S⊥ ¼ −ρBEz þ
1

2

∂ha2i
∂ξ

neγ−1; ð3Þ

where W̃ ¼ W − Sz, which we refer to as the quasienergy
density of plasma wake. The sources on the right-hand
side correspond to relativistic bunches (both drivers and
witnesses) with the current jB ¼ j − je ≈ ρBz0 and the
laser driver. This equation is similar to the energy
conservation law in the transverse 2D space with ξ
acting as a time variable.
Plasma wakefields are usually described with the wake-

field potential ψ ¼ φ − Az, where φ is the electrostatic
potential, and Az is the z component of the vector potential
A. In this case, the wakefield is fully represented with the
magnetic field B and the wakefield potential ψ , and
the electric field can be written as E ¼ −∇ψ − z0 × B,
and the quasienergy densities of the EM field and electrons
are W̃EM ¼ 1

2
½ð∇ψÞ2 þ B2

z � and W̃e ¼ neðγ − 1Þð1 − vzÞ,
respectively. Both W̃EM and W̃e are positively defined
values, which supports their meaning as quasienergy
density.
If we integrate Eq. (3) over the transverse coordinate, we

get

dΨ
dξ

¼ −
Z

ρBEzd2r⊥ þ 1

2

Z
∂ha2i
∂ξ

neγ−1d2r⊥; ð4Þ

where ΨðξÞ ¼ R
W̃ðξ; r⊥Þd2r⊥ is total quasienergy in the

transverse 2D slice (ξ ¼ const) or, alternatively, the total
energy flux along the moving window [14]. This equation
describes the exchange of the quasienergy stored in the
wakefield with laser drivers and external particle bunches.
In the regions along ξ where the right-hand side is equal to
0 (for example, behind the driver and in the absence of
accelerated witness bunches), Ψ ¼ const, so quasienergy is
conserved in a wakefield. This energy conservation is
general and must be satisfied in all cases, including the
case of strongly nonlinear interaction, so we can expect that
the properties of the bubble should be related to energy
conservation.
We now consider the strongly nonlinear regime of

interaction in uniform plasma. We assume axial symmetry,
so all values depend on r ¼ jr⊥j, and only Ez, Er, and Bϕ

components of the EM field remain nonzero. For simplic-
ity, we also ignore the influence of the laser pulse, assuming
that we consider either an electron driver or LWFA in the
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region behind the laser driver, where its influence is no
longer present.
Before moving on to applying the energy conservation

law to the bubble regime, we briefly describe the existing
theory of this regime by W. Lu et al. [15,16], as the
comparison to it will be important. In this theory, the space
is separated into three different areas: the inner part of the
bubble with a radius rbðξÞ that depends on the longitudinal
coordinate, the electron sheath at the boundary of the
bubble, and the unperturbed plasma far outside the bubble
(see Fig. 1). The boundary of the bubble rbðξÞ is then
treated as an electron trajectory, which leads to a second-
order ordinary differential equation,

AðrbÞ
d2rb
dξ2

þ BðrbÞ
�
drb
dξ

�
2

þ CðrbÞ ¼ λðξ; rbÞ ð5Þ

and the electric field is Ez ¼ αðrbÞdrb=dξ, where

A ¼ r3b
4
þ rb þ

3

4
r2bΔ; B ¼ rbðrb þ ΔÞ

2
; ð6Þ

C ¼ r2b
4

�
1þ

�
1þ rbΔ

2

�
−2
�
; α ¼ rb þ Δ

2
: ð7Þ

The source term λðξ; rbÞ ¼ − R rb
0 ρBðξ; r0Þr0dr0 describes

the influence of driving and witness bunches, and Δ is the
typical width of the electron sheath. In Refs. [15,16], a
more general form of these coefficients with a function
βðrbÞ is used that depends on the specific shape of the
electron sheath on the boundary [18,19]. In this Letter, we
use a sufficiently good approximation βðrbÞ ¼ 2Δ=rb.
In Figs. 2(a) and 2(b), the comparison between 3D

particle-in-cell (PIC) simulations for an electron-bunch-
driven bubble and the predictions of Lu’s model for
different values of Δ are shown (see Supplemental
Material [26] for the details on PIC simulations).
Equation (5) for the boundary of the bubble was solved
numerically from the center position (the size and the center
of the bubble are taken from simulation data) using the
Runge-Kutta method of order 5(4) [27]. If Δ is chosen well
(Δ ¼ 0.5 provides the best fit in this case), these equations
can describe the bubble fairly accurately. However, the
value of Δ cannot be found from theoretical considerations
and has to be fit to better match numerical simulations. And
even in the best case, a disagreement between the model
and the simulations at the very back of the bubble remains.
The electric field there can be more accurately described by
multisheath models [22], but they increase the complexity
of equations and introduce more parameters into the theory.
Equation (5) can also be simplified in the ultrarelativistic

limit corresponding to Δ ≪ rb and rbΔ ≫ 1 (see Ref. [16]

for details). These conditions automatically mean that the
bubble itself must be large, rb ≫ 1. In this case,

A ¼ r3b
4
; B ¼ r2b

2
; C ¼ r2b

4
; α ¼ rb

2
; ð8Þ

and the equation no longer depends on the arbitrary
parameter Δ. However, due to the conditions of applicabil-
ity, this simplified equation is limited to describing very
large bubbles and cannot describe very small bubbles [see
the dotted line in Figs. 2(c) and 2(d)].
We now use a different approach to the description of the

bubble by applying the energy conservation law given by
Eq. (4). To do so, we need to quantify the quasienergy
densities W̃EM and W̃e. A strongly nonlinear wakefield (a
bubble) is characterized by the eviction of almost all
electrons and the formation of a cavity behind the driver
(Fig. 1). So, we make the following assumptions: (i) the
bubble has a boundary rbðξÞ within which there are no
plasma electrons, i.e., W̃e ¼ 0 when r < rbðξÞ, and (ii) the
electron sheath on the boundary of the bubble is infinitely
thin and there are no fields and no plasma motion outside
the bubble for r > rb, so W̃ ¼ 0 there. The total quasie-
nergy in the slice Ψ ¼ ΨEM þΨe has contributions from
the EM field and from the electrons in the sheath.
We begin with the EM field contribution. The wakefield

potential satisfies the equation Δ⊥ψ ¼ jz;e − ρe − 1. For
the infinitely thin electron sheath, no electromagnetic fields

FIG. 2. The electron density distribution (a),(c) and the longi-
tudinal electric field Ez (b),(d) in a bubble excited by an electron
driver. On (a),(b), solutions for different values of Δ are
calculated according to Eq. (5) with coefficients, Eqs. (6) and
(7), from the previous model by Lu et al. On (c),(d), the dashed
lines show the solution according to the new proposed model,
Eq. (13), and the dotted lines show the predictions of the previous
model in the ultrarelativistic limit, Eq. (8). The driver is
propagating to the right and has a Gaussian shape with
kpσr ¼ 1, kpσz ¼ 2, and ρ0 ¼ 5.
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remain outside the bubble, and thus the continuity of the
wakefield potential at the boundary leads to ψðξ; rbÞ ¼ 0.
Inside the bubble (r < rb), only the ion term equal to −1
remains, so ψ ¼ ½r2bðξÞ − r2�=4. Therefore, the quasienergy
of the EM field is

ΨEM ¼ π

Z
rb

0

ð∇ψÞ2r0 dr0 ¼ πr4b
16

�
1þ 2

�
drb
dξ

�
2
�
: ð9Þ

To calculate the quasienergy Ψe of the electrons in the
electron sheath, we consider an infinitely thin model of the
sheath represented by delta functions,

jz ¼ j0ðξÞrbδðr − rbÞ; ρe ¼ ρ0ðξÞrbδðr − rbÞ: ð10Þ

We also use the fact that the motion of plasma electrons
satisfies the integral γ − pz − ψ ¼ 1, so Ψe ¼
−2π

R rbþ0
rb−0 jzr dr ¼ −2πj0ðξÞr2b. The values of j0 and ρ0

can be found from the demand that
R∞
0 ðjz − ρÞr0dr0 ¼ 0

and the assumption that electrons in the sheath are moving
tangentially to the border, so that pr=pz ¼ drb=dξ. In this
case,

j0 ¼ −
1

4

�
drb
dξ

�
2

; Ψe ¼
πr2b
2

�
drb
dξ

�
2

: ð11Þ

Thus, the total quasienergy is equal to

Ψ ¼ πr2b
16

�
r2b þ ð2r2b þ 8Þ

�
drb
dξ

�
2
�
: ð12Þ

The longitudinal electric field exists only inside the bubble
and is given by Ez ¼ dψξ=dξ ¼ ðrb=2Þdrb=dξ, so Eq. (4)
gives an equation for the bubble identical to Eq. (5) with

A¼ r3b
4
þ rb; B¼ 1þ r2b

2
; C¼ r2b

4
; α¼ rb

2
: ð13Þ

So, by applying the energy conservation law, we arrived
at an equation for the boundary of the bubble. Therefore,
we can conclude that this equation is a manifestation of
the fundamental law of energy conservation in plasma
wakefield.
If we assume that the bubble is large (rb ≫ 1) and,

correspondingly, almost all quasienergy is stored in the
electromagnetic field (Ψe ≪ ΨEM), then the lower-order
terms in coefficients A and B can be neglected, and we
arrive at the Lu’s model in the ultrarelativistic limit, Eq. (8).
So, for large bubbles, the previous theory and the con-
servation energy approach provide exactly the same result,
which was already observed in Ref. [28]. However, for
smaller bubbles, the models are different. In particular, the
constant term equal to 1 in the B coefficient is always
absent in the previous model where B is given by Eq. (6). In
addition, it can also be shown that the previous model does

not have an energy integral. In fact, bubble equation (5) can
be reduced to Eq. (4) if and only if its coefficients satisfy
the criterion dðAαÞ=drb ¼ 2αB. It is satisfied in the ultra-
relativistic limit of the previous model, but not in the
general case, so the model does not correspond to any
integral. This might be the reason why it becomes so
complex for smaller bubbles, as it tries to match the
numerical solution using an approach that is not compatible
with the fundamental energy conservation law. On the
contrary, the approach based on energy conservation—even
for a very simple delta-layer sheath—describes small
bubbles much better than the previous theory even with
a good fit for Δ [see the comparison between Figs. 2(a),
2(b) and 2(c), 2(d)]. At the same time, the coefficients in the
new model remain very simple and do not depend on any
arbitrary parameter, which makes this model universal.
One of the main motivations of these theoretical works

is predicting the wakefield properties using only the driver
parameters, without requiring any parameters taken from
simulations. In a previous work by Golovanov et al. [23],
a method for calculating the excitation of the bubble by an
electron driver based on Lu’s model in the ultrarelativistic
limit given by Eqs. (5) and (8) was proposed. This
approach, which makes it possible to calculate the bubble
shape starting from the driver front, does not rely on any
parameters from simulations (see the dotted lines in

FIG. 3. Electron density distributions and the longitudinal
electric fields Ez in bubbles excited by electron drivers with
different peak densities ρ0. Dashed lines correspond to the
solution of Eq. (5) with coefficients, Eq. (13), from the new
model [except for rb < 1 where old coefficients, Eq. (8), are used
instead]; dotted lines correspond to the solution with coefficients,
Eq. (8), according to the approach from Ref. [23]. The drivers
have a Gaussian shape with kpσr ¼ 1 and kpσz ¼ 2.
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Fig. 3). However, it is based on the approximation
rb ≫ 1 and thus provides improper results for smaller
size bubbles.
The new model cannot be used for the same purpose with

the method described in Ref. [23], as coefficients, Eq. (13),
lead in this case to a solution rb ¼ 0, and no excitation
happens. This likely owes to a nonphysical scaling of the
quasienergy in the electron sheath Ψe ∝ r2b, which com-
pletely dominates over the electromagnetic energy ΨEM ∝
r4b for small values of rb during the initial stage of
excitation. In reality, this should not happen, as the sheath
is not yet formed during this stage, and this scaling of Ψe is
inadequate (for instance, in the quasilinear wake at the very
front of the driver, Ψe ¼ ΨEM instead of Ψe ≫ ΨEM
predicted by the model). So a proper theory describing
bubble excitation should probably involve a more accurate
description of the energy relations during the initial stage of
excitation.
In order to self-consistently calculate the wakefield for

an electron driver, we combine the approach from Ref. [23]
with the new model. To do so, we calculate the solution
according to Ref. [23] until the radius of the bubble reaches
rb ¼ rth ¼ 1. Then we switch to the new model with
coefficients, Eq. (13), assuming continuity of rb and its
derivative. Figure 3 shows the comparison of the model to
numerical simulations for the electron density distributions
and the longitudinal electric fields Ez for three different
peak densities of the driver. More comparisons are also
reported in the Supplemental Material [26] for a wider
range of parameters, as well as for the case with a second
(witness) bunch. The excellent agreement between the
simulations and the theoretical predictions over a very
wide range of parameters shows better suitability compared
to the previously developed theory, while not increasing the
complexity of the solved equation and not introducing
additional parameters.
The new model was derived based on the energy

conservation law assuming a simple delta-layer electron
sheath. In principle, different shapes of the sheath can
also be considered if accurate description of currents and
fields outside the bubble is required. However, even the
simplest shape yields exceptional similarity to PIC
simulations (unlike the previous models that gave incor-
rect results in the limit of a delta-layer sheath). This
shows the fundamental advantage of using the energy
conservation approach, which gives more accurate pre-
dictions irrespective of our knowledge of the sheath
properties. Thus, all future theoretical developments
should take the energy conservation law into account.
The new theory can also be easily generalized to
transversely nonuniform plasma profiles to supersede
the previous theories [20,21]. The proposed model is
equally valid for the case of a laser-driven bubble in the
matched regime [16] in the regions behind the driver.
Using the energy conservation approach to develop a

self-consistent description for a laser-driven blowout
should be the next major step for the development of
this theory.

The work was supported by the Ministry of Science and
Higher Education of the Russian Federation (Agreement
No. 075-15-2020-906, Center of Excellence “Center of
Photonics”), by the Russian Foundation for Basic Research
(Grant No. 20-02-00691), by The Schwartz Reisman
Center for Intense Laser Physics, by Minerva, and by
the Israel Science Foundation. All PIC simulations in this
Letter were performed using the 3D PIC code
SMILEI [29,30].

*Corresponding author.
anton.golovanov@weizmann.ac.il

[1] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod.
Phys. 81, 1229 (2009).

[2] I. Yu. Kostyukov and A. M. Pukhov, Phys. Usp. 58, 81
(2015).

[3] V. Malka, J. Faure, Y. Gauduel, E. Lefebvre, A. Rousse, and
K. Phuoc, Nat. Phys. 4, 447 (2008).

[4] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267
(1979).

[5] M. J. Hogan, in Reviews of Accelerator Science and
Technology (World Scientific, Singapore, 2017), pp. 63–83.

[6] V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aléonard, F.
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