ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ЛАЗЕРНОГО УСКОРЕНИЯ ЭЛЕКТРОНОВ ПРИ УКОРОЧЕНИИ ЛАЗЕРНОГО ИМПУЛЬСА

О.Е. Вайс, М.Г. Лобок, В.Ю. Быченков

Физический институт им. П.Н. Лебедева РАН, Москва, Россия

онлайн-семинар «Новые методы ускорения частиц и экстремальные состояния материи»

Лазерно-плазменное ускорение электронов

Кильватерное ускорение (LWFA)

- Распространение лазерного импульса (ЛИ) в низкоплотной мишени
- $L < \lambda_p$ (ЛИ короче плазменной волны)
- моноэнергетичный пучок электронов (пКл)

Прямое лазерное ускорение (DLA)

- мишень околокритической плотности
- $L > \lambda_p$ (длинный лазерный импульс)
- экспоненциальный спектр электронов

Режим релятивистского самозахвата лазерного импульса

Условие согласования радиуса лазерного пучка, безразмерной амплитуды и плотности мишени:

$$R = \alpha \frac{c\sqrt{a_0}}{\omega_p} = \frac{\alpha c}{\omega_l} \sqrt{\frac{a_0 n_c}{n_e}}$$

Дифракционная расходимость уравновешивается релятивистской нелинейностью → радиус лазерного пучка примерно сохраняется при его распространении на многие рэлеевские длины. Платообразный спектр ускоренных электронов. Высокий заряд быстрых частиц (десятки нКл).

лазерного импульса в плоскости поляризации

[V Yu Bychenkov et al 2019 Plasma Phys. Control. Fusion 61 124004]

Мотивация

Увеличение мощности лазерного импульса путем его посткомпрессии

CafCA ("Compression after Compression Approach"): уширение спектра в кристалле с кубической нелинейностью (*n* = *n*₀ + *n*₂*I*) → чирпированный лазерный импульс с уширенным спектром → сжатие чирпированными зеркалами → спектрально ограниченный короткий импульс

Теоретические оценки

Заряд ускоренных электронов

Предотвращение развития неустойчивостей:

$$L = c\tau \lesssim \lambda_p$$
, или $\omega_l \tau \lesssim \sqrt{a_0 n_{cr}/n_e}$,

В более плотной плазме больший заряд:

$$n_e/n_{cr} \lesssim a_0/(\omega_l \tau)^2 \rightarrow n_e/n_{cr} \sim a_0/(\omega_l \tau)^2$$

Радиус лазерного импульса практически равен его длине:

$$R \sim c\tau$$

Связь ускоренного заряда с длительностью лазерного импульса:

$$Q_0 \propto e n_e R^3 \propto a R \propto \sqrt{W_L/\tau}$$

Теоретические оценки

Характерные энергии

Энергия частицы после ускорения электрическим полем:

 $\varepsilon_{max} \approx eEl_{acc}$

Характерное поле плазменной полости [I. Kostyukov et al., Phys. Plasmas 14, 5256 (2004)]:

$$E \sim (mc\omega_p/e) k_p R = (mc^2/e) (\omega_p/c)^2 R \sim n_e R$$

Длина ускорения частицы:

$$\begin{split} L_{deph} &\sim R/(1 - v_g/c) \\ v_g &\approx c \sqrt{1 - n_e/\gamma n_c} \end{split} \qquad \qquad l_{acc} \sim a_0 \tau/n_e \end{split}$$

Характерные энергии электронов:

$$\varepsilon_{max} \propto a_0 R \tau \propto (W_L \tau)^{1/2}$$

Моделирование

Лазерный импульс: $\lambda_1 = 1$ мкм, W = 4.6 Дж.

т, фс	<i>Р</i> , ТВт	<i>D_F</i> , мкм	a ₀	<i>I_p</i> , Вт/см²	n _e /n _c	П _{е,} СМ ⁻³
10	430	4	41.6	2.4x10 ²¹	0.15	1.67x10 ²⁰
40	110	4	20.8	6.0x10 ²⁰	0.13	1.45x10 ²⁰
40	110	8	10.4	1.5x10 ²⁰	0.005	5.57x10 ¹⁸

параметры расчетов

Распространение лазерного импульса длительностью 40 фс в низкоплотной мишени

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 10, *n*_e=0.005*n*_c)

 $\tau = 40.0 \text{ fs}, n_e = 0.005 n_c$

Распространение лазерного импульса длительностью 40 фс в низкоплотной мишени

распределение электронной плотности и продольного электрического поля в плоскости поляризации (*a*₀ = 10, *n*_e=0.005*n*_c)

Распространение лазерного импульса длительностью 40 фс

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 21, *n*_e=0.13*n*_c)

 $\tau = 40.0 \text{ fs}, n_e = 0.13 n_c$

Распространение лазерного импульса длительностью 40 фс

распределение электронной плотности и продольного электрического поля в плоскости поляризации (*a*₀ = 21, *n*_e=0.13*n*_c)

L > λ_p Формирование филаментов. Модуляции плотности на масштабах длины лазерной волны.

Распространение лазерного импульса длительностью 10 фс

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 42, *n*_e=0.15*n*_c)

 $\tau = 10.0$ fs, $n_e = 0.15 n_c$

Распространение лазерного импульса длительностью 10 фс

распределение электронной плотности и продольного электрического поля в плоскости поляризации (*a*₀ = 42, *n*_e=0.15*n*_c)

Формирование ускоряющей плазменной полости.

 $L \sim \lambda_p$

Модуляции в распределении плотности электронного банча в плоскости поляризации ЛИ.

Сравнение результатов для лазерных импульсов различной длительности

Спектры частиц при достижении наибольшей конверсии

характеристики электронного пучка, ускоренного плазменной полостью

параметры	<i>€_{тах,>30мэВ},</i> МэВ	<i><€_{>30МэВ}></i> , МэВ	Q _{>30МэВ} , нКл	<i>W</i> ⊳ _{зомэ} в, Дж
т = 10 фс, D _F = 4 мкм	280	151	10	1.2
<i>т</i> = 40 фс, <i>DF</i> = 4 мкм	160	60	4.4	0.25
<i>τ</i> = 40 фс, <i>D_F</i> = 8 мкм	420	200	1.5	0.19

Моделирование

Лазерный импульс: $\lambda_1 = 0.8$ мкм, W = 0.85 Дж.

т, фс	<i>Р</i> , ТВт	<i>D_F</i> , мкм	a ₀	<i>I_p</i> , Вт/см²	n _e /n _c	П _{е,} СМ ⁻³
10	80	4	14.3	4.4x10 ²⁰	0.067	1.17x10 ²⁰
40	20	4	7.14	1.1x10 ²⁰	0.033	5.74x10 ¹⁹
40	20	8	3.57	2.76x10 ¹⁹	0.006	1.04x10 ¹⁹

параметры расчетов

Распространение лазерного импульса длительностью 40 фс в малоплотной плазме

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*n_e*=0.0015*n_c*)

[S.P.D. Mangles et al., Self-injection threshold in self-guided laser wakefield accelerators, Phys. Rev. ST Accel. Beams 15, 011302 (2012)]

Теоретические оценки

Ограничение длительности лазерного импульса для его стабильного распространения

Устойчивое распространение лазерного импульса: релятивистская самофокусировка:

$$R \sim \lambda_p$$
 и $a_0 \gg 1$

без самомодуляции:

 $c\tau \lesssim \lambda_p$

Ограничение на длительность импульса:

$$a_0 = \sqrt{W_L^*/R^2c au} \gg 1$$
, где $W_L^* = a_0^2 R^2 c au$
 $c au \lesssim R$

$$c\tau \leq R \ll \sqrt{W_L^*/c\tau} \longrightarrow \sqrt{W_L^*/(c\tau)^3} \gg 1$$

Ограничение длительности для лазерной самофокусировки: 1Дж, 30фс в экспериментальной работе [Faure J. et al., A laser–plasma accelerator producing monoenergetic electron beams, Nature **431**, 541 (2004)]

Распространение лазерного импульса длительностью 40 фс в малоплотной плазме

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 3.57, *n*_e=0.006*n*_c)

распределение электронной плотности и продольного электрического поля в плоскости поляризации

Распространение лазерного импульса длительностью 40 фс

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 7.14, *n*_e=0.033*n*_c)

распределение электронной плотности и продольного электрического поля в плоскости поляризации

 $L > \lambda_p$

Распространение лазерного импульса длительностью 10 фс

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 14.3, *n*_e=0.067*n*_c)

распределение электронной плотности и продольного электрического поля в плоскости поляризации

 $L \sim \lambda_p$

Сравнение результатов для лазерных импульсов различной длительности

Спектры частиц при достижении наибольшей конверсии

характеристики электронного пучка, ускоренного плазменной полостью

параметры	<i>ɛ</i> _{max,>20мэв} , МэВ	<i><€_{>20МэВ}></i> , МэВ	Q _{>20МэВ} , нКл	<i>W_{>20Мэ}в</i> , мДж
т = 10 фс, D _F = 4 мкм	120	70	3.1	200
т = 40 фс, D _F = 4 мкм	90	55	2.0	100
т = 40 фс, D _F = 8 мкм	160	130	0.01	1

Заключение

- При распространении лазерного импульса в режиме релятивистского самозахвата более короткие импульсы имеют больший коэффициент конверсии в энергию высокоэнергетичных частиц, что обусловлено возможностью использовать более плотные мишени, которые позволяют ускорить больший суммарный заряд электронов.
- При распространении лазерного импульса в низкоплотных мишенях значения характерных энергий распределений частиц оказываются выше.
- Использование более короткого импульса заданной энергии позволяет избежать как филаментацию лазерного пучка (в случае плазмы околокритической плотности, т.к. *L* < *λ*_p), так и формирования плазменных волн (которые возникают в низкоплотных мишенях).

СПАСИБО ЗА ВНИМАНИЕ!