Аномальное поглощение сверхмощных лазерных импульсов в релятивистски неплотной плазме

Михаил Серебряков

9 ноября 2023 г.

Взаимодействие лазерного излучения с веществом

a₀ = ^{eE₀}/_{mcω} − безразмерная амлитуда лазерного поля,

$$\chi = \frac{\sqrt{(\varepsilon E/c + p \times B) - (p \cdot E)^2}}{mcE_S} -$$
КЭД параметр,
 E_S = ^{m²c³}/_{ħe},
 n_{cr} = ^{mω²}/_{4πe²} − критическая плотность плазмы.

Взаимодействие лазерного излучения с веществом

▶ a₀ = ^{eE₀}/_{mcω} - безразмерная амлитуда лазерного поля,
▶
$$\chi = \frac{\sqrt{(\varepsilon \mathbf{E}/c + \mathbf{p} \times \mathbf{B}) - (\mathbf{p} \cdot \mathbf{E})^2}}{mcE_S} -$$
КЭД параметр,
E_S = ^{m²c³}/_{ħe},
▶ n_{cr} = ^{mω²}/_{4πe²} - критическая плотность плазмы.

*a*₀ ≥ 1 — релятивистские колебания,
 χ ≥ 1 — влияние КЭД эффектов.

Взаимодействие лазерного излучения с веществом

Нелинейное Комптоновское рассеяние

Процесс Брейта-Уилера

Плотность плазмы: зависимость от КЭД эффектов

3D PIC моделирование: $a_0 = 2100$, $n_e = 50n_{cr}$.

Перераспределение энергии лазерного импульса

3D PIC: $a_0 = 1800, n_e = 50n_{cr}.$

Рождение e^-e^+ пар не учтено: $\frac{L_p-L_i}{\lambda} \approx \frac{a_0 n_{cr}}{2 s n_e};$

Рождение e^-e^+ пар не учтено: $\frac{L_p-L_i}{\lambda} \approx \frac{a_0 n_{cr}}{2s n_e}$; примем во внимание развитие КЭД каскада: $L_p =$ $L_{e^+e^-} + \frac{c}{\Gamma} \ln \left(\frac{L_{las}}{2(L_p-L_i)} \frac{a_0 n_{cr}}{n_0} \right)$ Проверка существования КЭД каскада: численное моделирование и учёт продольного поля

Моделирование демонстрирует существование 5 поколений частиц при

 $a_0 = 2500, n_e = 50n_{cr}.$

Проверка существования КЭД каскада: численное моделирование и учёт продольного поля

Моделирование демонстрирует существование 5 поколений частиц при

 $a_0 = 2500, n_e = 50n_{cr}.$

Поле E_x не превышает 0,1 лазерного поля, однако радикально меняет траекторию заряженной частицы.

Движение электрона в плоской волне с добавочным продольным полем

В случае $E_x = 0$ траектория электрона в импульсном пространстве представляет собой параболу $p_x = p_y^2/2$.

Движение электрона в плоской волне с добавочным продольным полем

В случае $E_x = 0$ траектория электрона в импульсном пространстве представляет собой параболу $p_x = p_y^2/2$. При $E_x \neq 0$ появляется новое стабильное направление — $\theta_{rf} \approx 2E_x/E_y$.

Траектория при ненулевом продольном поле:

$$p_x(\xi) = \frac{1 + [C_y + A_y(\xi)]^2 - [C_x - \xi E_x]^2}{2(C_x - \xi E_x)}$$
(1)

Оценки параметра χ

$$\overline{\sin \theta_{rf}} = \frac{8}{\pi} \frac{a_0 E_x}{a_0^2 + 2E_x^2} \longrightarrow \chi \approx \frac{\gamma F_{\perp}(\theta_{rf})}{a_S},$$
(2)

где $a_S = e E_S/m c \omega_L$. Если $E_x \ll a_0$, то $\chi \approx E_x^2/a_S$.

Зависимость поглощения от начальной плотности плазмы

$$L_p \approx L_{e^+e^-} \sim L_0 + \frac{\lambda a_S^{1/2}}{2\pi} \frac{n_{cr}}{n_0}$$
 (3)

Зависимость поглощения от начальной плотности плазмы

$$L_p \approx L_{e^+e^-} \sim L_0 + \frac{\lambda a_S^{1/2}}{2\pi} \frac{n_{cr}}{n_0}$$
 (3)

Выводы

- Глубина проникновения лазерного импульса в разреженную плазму не растёт при дальнейшем увеличении интенсивности после достижения a₀ ~ 1000.
- Анализ движения электрона показывает, что добавление слабого продольного поля к полю плоской волны приводит к росту квантового параметра χ , а значит, делает возможным развитие КЭД каскада.
- Формируется плотный электрон-ионный сгусток, который и создаёт упомянутое продольное поле.