

Управление длиной кильватерного ускорения оптически созданной ударной волной

I. Tsymbalov,^{1, 2}, E. Starodubtseva,¹ D. Gorlova,^{1, 2} K. Ivanov,^{1, 3} R. Volkov,¹ I. Tsygvintsev,⁴ Yu. Kochetkov,⁵ Ph. Korneev,⁵ A. Polonski,² and A. Savel'ev^{1, 3}

¹Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
²Institute for Nuclear Research of Russian Academy of Sciences, 117312, Moscow, Russia
³Lebedev Physical Institute of Russian Academy of Sciences, 119991, Moscow, Russia
⁴Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 125047 Moscow, Russia
⁵National Research Nuclear University MEPhI, 115409, Moscow, Russia

Outline

- Density profile of a gas jet, modified by a shock wave generated by an additional ns laser pulse

- Electron acceleration dynamics measurements and beam quality improvement by cutting plasma channel using shock wave

Gas target characterization

Gas target characterization

ns pulse

Electron beam acceleration dynamics measurements

 $n \approx 0.05 n_{cr}$ $v_{\phi} = c \sqrt{1 - n/n_{cr}} \approx 0.975 c$. $\lambda_p = v_{\phi} \omega_p \approx 4.5 \lambda$

electron beam 1-2 MeV from lanex

 $L_d \approx \frac{1}{2}\lambda_p/(1-v_\phi/c) \approx 90\lambda \approx 20\lambda_p.$

RLP

Plasma channel optical emission

Plasma channel optical emission

Electron energy spectrum for different shock front positions

RLP | Laboratory of Relativistic Laser Plasma

PIC simulation of dephasing reduction

PIC simulation of dephasing reduction

Electron energy spectrum for different shock front positions

Electron energy spectrum for different shock front positions

Electron bunch in phase space

Electron bunch in phase space

Plasma lens

Thaury C. et al. Demonstration of relativistic electron beam focusing by a laser-plasma lens //Nature communications. – 2015. – T. 6. – N $_{2}$. 1. – C. 6860.

Chang Y. Y. et al. Reduction of the electron-beam divergence of laser wakefield accelerators by integrated plasma lenses //Physical Review Applied. – 2023. – T. 20. – №. 6. – C. L061001.

Plasma lens

x =470λ

x =485λ

<u>x_</u>=460λ

RLP | Laboratory of Relativistic Laser Plasma

Electron beam acceleration dynamics measurements

Laboratory of Relativistic Laser Plasma

Reduction of defocusing

Electron beam parameters

RLP | Laboratory of Relativistic Laser Plasma

Conclusions

- Channel cutting by a shock wave can be used to measure the spatial dynamics of electron acceleration and for reduction of the electron bunch dephasing in the plasma wave. This is demonstrated for SM-LWFA
- Using this technique, a quasi-monochromatic (8-11 MeV) beam with a charge of 2 pC was obtained in SM-LWFA
- Reduction of defocusing allowed to experimentally obtain the well collimated electron bunch with charge up to 10pC (>8 MeV energy range)
- Neutron source of 10^6 neutrons / (shot × J) was obtained
- Results are easily scalable to kHz level. Wide range of applications (nondemanding to bunch energy spread), including ultrafast neutron source, Xrays, radiography are available.

Thank you for attention

Electron beam dephasing

