Лабораторная астрофизика с применением сверхмощного лазера PEARL

Докладчик: Роман Сергеевич Земсков

Соавторы: С.Е. Перевалов, А.В. Котов К.Ф. Бурдонов, А.А. Соловьев, М.В. Стародубцев Институт Прикладной Физики РАН, г. Нижний Новгород

Лазер PEARL

Молодая звезда

15 мая 2025 года

План выступления

- Введение Зачем нужна лабораторная астрофизика
- Короткий обзор некоторых лабораторных установок
- Масштабируемость или скейлинг
- Применение мощных наносекундных лазеров
- Взаимодействие плазмы с внешним магнитным полем
- Классическая задача коллапса каверны
- Применение сверхмощных фемтосекундных лазеров
- Особенности взаимодействия «фемтосекундной» плазмы с внешним магнитным полем
- Вейбелевская неустойчивость в потоке лазерной плазмы
- Стагнация встречных плазменных потоков. Ударные волны

Зачем нужна лабораторная астрофизика?

Демонстрация типичного разрешения современных наблюдательных инструментов. Снимки получены в работе Lee et al., Sci. Adv. 2017 с помощью Atacama Large Millimeter/submillimeter Array (ALMA) для объекта HH212.

классической работы М. Camenzind (1990)

Взаимодействие потоков плазмы с магнитным полем

Установки для лабораторного моделирования

LAPD, Калифорнийский университет

Установка КРОТ (ИПФ РАН)

Экспериментальная установка КИ-1

Лазерная установка PEARL (ИПФ РАН)

МГД масштабируемость лабораторных экспериментов

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} &= 0, \\ \rho \left(\frac{\partial v}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla p - \frac{\mathbf{B} \times \nabla \times \mathbf{B}}{4\pi}, \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times \mathbf{v} \times \mathbf{B}, \\ \frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p &= -\gamma p \nabla \cdot \mathbf{v}. \end{aligned}$$

Условия применимости масштабирования Эйлера
1. Частицы локализованы:
$$r_{Li} \ll L$$
 или $l_c \ll L$, где L – масштаб системы
2. $Re = \frac{LV}{v} \gg 1$; Re – число Рейнольдса, v – кинематическая вязкость
3. $Pe = \frac{LV}{\chi} \gg 1$; Pe – число Пекле, χ – коэффициент теплопроводности
4. $Re_m = \frac{LV}{\eta} \gg 1$; Re_m - магнитное число Рейнольдса, η – коэффициент
магнитной диффузии

Числа Эйлера
$$Eu = \frac{v\sqrt{\rho}}{\sqrt{p}}$$
 совпадают: $Eu_1 \approx Eu_2$;
Плазменные бета $\beta = \frac{8 \pi p}{B^2}$ совпадают: $\beta_1 \approx \beta_2$;
Эквивалентно можно использовать число Альфвена: $Al = \frac{1}{\beta \times Eu^2} = \frac{B^2/8\pi}{\rho v^2}$

$$T_{\rm actpo} = T_{\rm лаб} * \frac{L_{\rm actpo}}{V_{\rm actpo}} \frac{V_{\rm лаб}}{L_{\rm лаб}}$$

*Ryutov D., Remington B., Robey H. et al. Magnetohydrodynamic scaling: From astrophysics to the laboratory // Physics of Plasmas. 2001. 05. Vol. 8.

Кинетические явления

Корональные выбросы Солнца

Солнечный ветер от молодой звезды L.L. Orionis создает бесстолкновительную ударную волну

Ryutov D. D. et al. Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field //Plasma Physics and Controlled Fusion. – 2012. – T. 54. – №. 10. – C. 105021.

5.2 ns **7/27**

1 r

Кинетический скейлинг

$$\frac{\partial f_{i}'}{\partial t'} + v' \cdot \frac{\partial f_{i}'}{\partial t'} + \left[-\nabla'\varphi' + \frac{u}{c} \left(-\frac{\partial A'}{\partial t'} + v' \times \nabla' \times A' \right) \right]$$

$$\cdot \frac{\partial f_{i}}{\partial v'} = 0,$$

$$\frac{\partial f_{i}'}{\partial t'} + v' \cdot \frac{\partial f_{c}'}{\partial t'}$$

$$-\frac{Am_{p}}{Zm_{e}} \left[-\nabla'\varphi' + \frac{u}{c} \left(-\frac{\partial A'}{\partial t'} + v' \times \nabla' \times A' \right) \right]$$

$$\cdot \frac{\partial f_{e}}{\partial v'} = 0$$

$$\frac{\partial f_{e}'}{\partial v'} = 0$$

$$\frac{\partial f_{e}'}$$

Ryutov D. D. et al. Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field //Plasma Physics and Controlled Fusion. – 2012. – T. 54. – №. 10. – C. 105021.

Плазма во внешнем магнитном поле

[Bernhardt P. A. et al. Observations and theory of the AMPTE magnetotail barium releases //Journal of Geophysical Research: Space Physics. – 1987.]

[R. Zemskov et al., Radiophysics and Quantum Electronics 57 (2024)] 9/27

Интерпретация лабораторных результатов аккреции в молодых звездах

Отличия нагрева мишени фс и нс импульсами

Потоки «фемтосекундной» и «наносекундной» плазмы с энерго-

вкладом одного порядка

Измерения поля батареи Бирманна и фонтанных полей

Динамика плазмы в поперечном магнитном поле 14 Тл

Динамика «языков» плазмы

Фемтосекундная накачка

15/27

B

B

Холловские эффекты

$$|rot(\frac{[\mathbf{j} \times \mathbf{B}]}{en_e})| \sim |\frac{M_i c}{e} rot(\frac{d\mathbf{v}}{dt})| \sim \omega \frac{M_i c}{e} \delta v / \delta r$$

$$\omega^{-1} \lesssim \Omega_{ci}^{-1}$$

$$HN = \frac{cB}{4\pi e n_e V L_n} = \frac{c/\omega_{pi}}{R_{Li}} \times \frac{c/\omega_p}{L_n}$$

$$\omega^2 + ik^2(D_m + \nu)\omega + \gamma^2_{ideal} - k^4 D_m \nu = 0$$

[Tang H. et al. //Physics of Plasmas. 2020]

$$\gamma \approx 0.5 \left(-k^2 D_m + \sqrt{k^4 D_m^2 + 4\gamma_{ideal}^2} \right)$$

	Fs flow	Ns flow
Material	$C_5O_2H_8$	CF_2
\mathbf{Z}	3	6
Α	7	17
$\operatorname{B}\left[G ight]$	$1.4 imes 10^5$	$1.4 imes10^5$
L[cm]	0.3	0.4
$n_{e} \ [cm^{-3}]$	$4 imes 10^{17}$	$2 imes 10^{18}$
$\mathrm{T}_{e}[\mathrm{eV}]$	20	100
$\mathrm{T}_i[\mathrm{eV}]$	20	100
V [km/s]	100	400
$ ho \; [g.cm^{-3}]$	1.6×10^{-6}	9.5×10^{-6}
$C_{S} \ [km.s^{-1}]$	43	81
$l_{ee} \ [cm]$	6.4×10^{-4}	1.4×10^{-3}
$ au_{col \; ee} \; [ns]$	1×10^{-2}	1.9×10^{-2}
$\mathbf{R}_{Le} \ [cm]$	7.6×10^{-5}	1.7×10^{-4}
$\mathbf{f}_{ce} \left[Hz ight]$	3.9×10^{11}	3.9×10^{11}
$l_{ei} \ [cm]$	1.2×10^{-4}	9.7×10^{-4}
$ au_{col\ ei}\ [ns]$	1.2×10^{-2}	2.4×10^{-2}
l_{ii} (directed) $[cm]$	6×10^{-4}	9×10^{-4}
$ au_{col\ ii}\ [ns]$	6×10^{-2}	2.3×10^{-2}
\mathbf{R}_{Li} (directed) $[cm]$	1.7×10^{-2}	8.5×10^{-2}
$\mathbf{f}_{ci} \left[Hz ight]$	9.1×10^{7}	7.5×10^{7}
$\mathrm{f}_{pi}\left[Hz ight]$	8.7×10^{10}	1.1×10^{12}
$\mathrm{c}/\omega_{pi}~[cm]$	5.5×10^{-2}	2.7×10^{-2}
$\eta [cm^2/s]$	5×10^{5}	4.3×10^{4}
${ m Re}_M$	14	370
Re	320	670
Eu		6.4
M_A	0.32	3.1
β	2.2×10^{-2}	4.8×10^{-1}
HN	8.7	0.4

C

0.6 ш 1.2

1017

1.0

Фемтосекундная

накачка

 $\int_{0}^{1} N_e dz, cm^{-2}$

 10^{16}

Наносекундная

накачка

 $\int_{0}^{\prime} N_{e} dz, cm^{-2}$

a

0.0 0.7

Полностью кинетические расчеты – модель Власова

Измерение Холловских магнитных полей

Наблюдение вейбелевской неустойчивости

представленные на панели (d)

time, ns

Вейбелевская неустойчивость во внешнем магнитном поле 17 Тл

E~7-8 Дж, τ = 8 нс

Эксперимент с встречными потоками

Заключение

Статьи, в которых можно найти некоторые результаты

- Соловьев А. А. и др. Исследования в области физики плазмы и ускорения частиц на петаваттном лазере PEARL //Успехи физических наук. – 2024. – Т. 194. – №. 3. - C. 313-335.
- Земсков Р.С. и др. «Лабораторное исследование неустойчивости рэлея тейлора в лазерной плазме, взаимодействующей с внешним магнитным полем» Известия вузов. Радиофизика 57 (2024).
- Burdonov K. et al. Laboratory modelling of equatorial 'tongue'accretion channels in young stellar objects caused by the Rayleigh-Taylor instability //Astronomy & Astrophysics. – 2022. – T. 657. – C. A112.
- Zemskov R. et al. Laboratory modeling of YSO jets collimation by a large-scale divergent interstellar magnetic field //Astronomy & Astrophysics. – 2024. – T. 681. – C. A37.
- Burdonov K. et al. Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments //Astronomy & Astrophysics. – 2021. – T. 648. – C. A81.

Спасибо за внимание!