iLCSoft TPC Geometry and reconstruction for Aurora

Task 3 status: CERN

Placido Fernandez Declara, André Sailer
September 28, 2020

CERN

TPC related tools in iLCSoft

- TPC geometry
https://github.com/iLCSoft/lcgeo/blob/master/detector/tracker/ TPC10_geo.cpp

- Geant4 sensitive detector
https://github.com/iLCSoft/lcgeo/blob/master/plugins/ TPCSDAction.cpp
Digitisation: parametrised resolutions
https://github.com/iLCSoft/MarlinTrkProcessors/blob/master/source/Digitisers/src/ DDTPCDigiProcessor.cc

Pattern recognition and track reconstruction

https://github.com/iLCSoft/Clupatra

https://github.com/iLCSoft/lcgeo/blob/master/detector/tracker/TPC10_geo.cpp
https://github.com/iLCSoft/lcgeo/blob/master/plugins/TPCSDAction.cpp
https://github.com/iLCSoft/MarlinTrkProcessors/blob/master/source/Digitisers/src/DDTPCDigiProcessor.cc
https://github.com/iLCSoft/Clupatra

Geometry detector file (1)

The different pieces build on each other.

- The gas volume is separated into cylinder surfaces, to force Geant4 to make a step.
- This in turn produces an energy deposit and hit

- The digitiser gets the hits produced by the simulation, and the geometry information
that is contained in the TPC driver

- Reconstruction uses the surfaces that the TPC driver defines

To run simulation and reconstruction for SCTAU using lcgeo and iLCSoft, add an XML
based on the [cgeo TPC driver to the SCT detector.

on for Aurora -

Geometry detector file (11)

Creating the geometry file:

- Based on sctau_detector_geoinitialize.xml’

- Missing materials were added in material_mixture.xml

- Needed constants were added from a mix of sources:
- lcgeo/ILD/compact/ILD_common_v@1/basic_defs.xml
+ lcgeo/ILD/compact/ILD_common_v@1/top_defs_common_v@1.xml
- lcgeo/ILD/compact/ILD_common_v@1/envelope_defs.xml
+ lcgeo/ILD/compact/ILD_common_v@2/top_defs_ILD_15_v@2.xml
- DD4hep/DDDetectors/compact/detector_types.xml

Thttps://git.inp.nsk.su/sctau/aurora/-/blob/master/DetectorDescription/DetBase/xml/sctau_detector_

geoinitialize.xml

ember

https://git.inp.nsk.su/sctau/aurora/-/blob/master/DetectorDescription/DetBase/xml/sctau_detector_geoinitialize.xml
https://git.inp.nsk.su/sctau/aurora/-/blob/master/DetectorDescription/DetBase/xml/sctau_detector_geoinitialize.xml

file (111)

- All detectors are added:
- TPCis replaced by

<detectors>
<include ref="..
<include ref="...
<include ref="..
<include ref="..
<include ref="..
<include ref="..
<include ref="...

./Aurora/@.
/Aurora/@.
./Aurora/e.
./Aurora/e.
./Aurora/@.
./Aurora/@.
/Aurora/e.

2
2
2
2
2
2

2

.4/InstallArea/x86_64-slc7-gcc9-opt/XML/BeamPipeGeo/beamPipeGeom_def.xml"/>
.4/InstallArea/x86_64-slc7-gcc9-opt/XML/FARICHGeo/sctau_FarichPID.xml"/>
.4/InstallArea/x86_64-slc7-gcc9-opt/XML/BarrelCrystalCaloGeo/BarrelCrystalCalo.xml"”/>
.4/InstallArea/x86_64-slc7-gcc9-opt/XML/EndcapCrystalCaloGeo/EndcapCrystalCalo.xml”/>
.4/InstallArea/x86_64-slc7-gcc9-opt/XML/CoilGeo/CoilGeom_def.xml"/>
.4/InstallArea/x86_64-slc7-gcc9-opt/XML/MuonSystemGeo/MuonSystem_def.xml"/>
.4/InstallArea/x86_64-slc7-gcc9-opt/XML/DriftChamberGeo/DriftChamberGeom_def.xml"/>

<include ref="my_tpc10_01.xml"/>

</detectors>

Geometry and reconstruction for Aurora - Placido Fer

TPC (1)

A TPC geometry file is generated 2:

- It defines the readouts and limits
- The TPC detector is described

- Dimensions are adapted to match SCTAU’s TPC
- The necessary constants are filled for the innerWall, the outerWall and the readout

- Different things need to be adapted:
- The composition and thickness of the innerWall and outerWall is still defined as in ILD

2https: //git.inp.nsk.su/plfernan/geom_tpc_aurora

iLCSoft T

https://git.inp.nsk.su/plfernan/geom_tpc_aurora

TPC (I1)

- Hits can be visualized by
exporting in SLCIO format

ddsim --compactFile
my_sctau_det_geo_2.xml -N
10 -G
--outputFile=hits.slcio

--part.userParticleHandler=""
--gun.isotrop=true
--gun.energy "100*MeV"
--steeringFile=steering.py

lcgeo in Proxima cluster

- lcgeo 3 can be built to be used with ddsim.

- It requires DD4hep with DDG4 plugin

-+ LCIO, CLHEP and BOOST are the other dependencies to build everything
- CVMFS could be used to run and compile the different parts
- Spack now contains recipes for this stack of software

- It compiles from scratch everything; only needs a compiler
- Compilation against existing packages can be done, against CYMFS for example

3https: //github.com/iLCSoft/lcgeo

iLCSoft TPC

https://github.com/iLCSoft/lcgeo

Compile and use [cgeo

[cgeo for ddsim can be compiled with this script®

- LCIO and CLHEP are compiled

- LCIO is exported to $LD_LIBRARY_PATH

- BOOST is downloaded (can be picked from existing installation)

- DD4hep and plugins are compiled against the LCIO installation

- DD4hep is exported to $LD_LIBRARY_PATH, and thisdd4hep.sh sourced
- Existing DD4hep is removed from $LD_LIBRARY_PATH

- LCGEO is the compiled against the LCIO and DD4hep installations

- Finally LCGEO is exported to $LD_LIBRARY_PATH to be used by ddsim

“https: //git.inp.nsk.su/plfernan/lcgeo_build

iLCSoft T

https://git.inp.nsk.su/plfernan/lcgeo_build

GMP Wrapper - Reconstruction

- The Gaudi-Marlin-Processors
Wrapper project brings Marlin
functionality to Gaudi
framework, smoothly.

- It creates interfaces (wraps)
around Marlin Processors,
encapsulating them in Gaudi
Algorithms.

- Current Marlin source code is
kept intact, and it is just called
on demand from the Gaudi
Framework.

‘ Marlin Gaudi
Language C++ C++
Working unit Processor Algorithm
Config. language XML Python
Set-up function init initialize
Working function process execute
Wrap-up function end finalize
Transient Data Format | LCIO anything

or Aurora -

GMP Wrapper now

- Bugs were fixed, a manual (README.md) was included with instructions to compile,
configure, run and test.

- Updated and modernization of the code base.

- Running examples are included as tests.

- A recipe to build it with Spack is also part of the k4-spack repo.
- It was included as part of Key4hep, moving there the repo®.

- Clis now included with GitHub Actions, checking syntax (clang-format), and running
two basic functionality tests.

>https://github.com/key4hep/

iLCSoft

https://github.com/key4hep/

GMP Wrapper can be built against an iLCSoft installation + Gaudi. Main dependencies:

- Gaudi: to wrap Marlin processors and run the algorithms.
- Marlin: to run the underlying processors

- It will eventually disappear when only Gaudi Algorithms are used
- LCIO: Event Data Model input/output

- Can be changed for a different one, i.e. EDM4hep

Other dependencies:
- ROOT, Boost
Or simply®:

- spack install key4hep-stack

6https ://key4hep.github.io/key4hep-doc/spack-build-instructions/README. html

https://key4hep.github.io/key4hep-doc/spack-build-instructions/README.html

GMP Wrapper configuration and running

Configuring and running the wrapper is done as in Gaudi, through a Python file:

- An algorithm list is filled with wrapped Marlin Processors.

- Processors parameters are defined for each instance, defining the Marlin processor
to load and list of parameters and values

- Converter for Marlin XML configuration files exists

On algorithm initialization of a Marlin Processor, MARLIN_DLL environment variable is used
to load the necessary libraries.

GMP configuration example

AW

5

© o N o

10

11

12

13

14

MyTPCDigiProcessor
MyTPCDigiProcessor
MyTPCDigiProcessor
MyTPCDigiProcessor

= MarlinProcessorWrapper (”"MyTPCDigiProcessor™)

.OutputLevel = INFO

.ProcessorType = "DDTPCDigiProcessor”

.Parameters = [
"DiffusionCoeffRPhi”, "0.025", END_TAG,
"DiffusionCoeffZ"”, "0.08", END_TAG,
"DoubleHitResolutionRPhi”, "2", END_TAG,
"DoubleHitResolutionZ”, "5", END_TAG,
"HitSortingBinningRPhi", "2", END_TAG,
"HitSortingBinningZ"”, "5", END_TAG,
"MaxClusterSizeForMerge"”, "3", END_TAG,
"N_eff", "22", END_TAG,
...
]

alglist.append(MyTPCDigiProcessor)

Added testing with ctest:

- Simple test that runs some Marlin Processors: AidaProcessor -> InitDD4hep ->
VXDBarrelDigitiser

- muon.slcio is used for input, without hits.
- Second test generates an input file with ddsim
- It runs a similar list of algorithms with actual hits

- Output checks for regex with INFO Application Manager Terminated successfully

ddsim \
--steeringFile $ILCSOFT/ClicPerformance/HEAD/clicConfig/clic_steer.py \
--inputFiles $ILCSOFT/ClicPerformance/HEAD/Tests/yyxyev_000.stdhep -N 4 \
--compactFile $ILCSOFT/lcgeo/HEAD/CLIC/compact/CLIC_03_v14/CLIC_o3_v14.xml \
--outputFile $CGMP_tests_DIR/inputFiles/testSimulation.slcio

SCTAU reconstruction

GMP Wrapper successfully computes the full CLIC reconstruction:

- The provided converter can translate to Python Gaudi steering file

- Algorithms for digitisers, reconstruction, pattern recognition, etc can be included into
this sequence

- The converter add all algorithms to the list, and leaves the configurable ones
commented

- It uses LCIO for the moment, but this can be adapted and will be changed in the
future

Future directions

- We can simulate the geometry and export hits in SLCIO or other formats
- We would then run digitisers, pattern recognition and reconstruction

- The Marlin file for reconstruction can be converted with the GMP Wrapper script
- Adapters for Event Data Model

- Move from LCIO to EDM4HEP.

- Converter available in K4LCIOReader ’
- Replace wrapped Marlin Processors by actual Gaudi Algorithms.
- How to approach the transition?

"https: //github.com/ihep-sft-group/K4LCIOReader/blob/master/src/K4LCIOConverter.cc

https://github.com/ihep-sft-group/K4LCIOReader/blob/master/src/K4LCIOConverter.cc

