

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

FDIRC Simulations

Michael Düren, Avetik Hayrapetyan, Mustafa Schmidt

September 29, 2020

Detector

- Onion shell: Vertex detector, Drift chamber, RICH/DIRC, Calorimeter, Solenoid
- PID including barrel and endcap part (green)
- Distance to IP: 1,100 mm
- Inner radius: 200 mm
- Outer radius: 800 mm
- Polar angle range: $10^{\circ} \dots 40^{\circ}$
- Momentum range: 0.5...1.5 GeV/c
- \bullet Separation of μ^\pm and π^\pm

Figure: SCT Detector

Required Resolution

< A > <

э

Previous GEANT4 Simulations

Figure: Original simulations including both FDIRC concepts

Figure: Results from previous meeting wihtout optimization

 \Rightarrow Optimization required!

Resolution Studies

Square sum of all individual errors equals the overall detector resolution:

$$\sigma_{\theta_c}^2 = \frac{\sigma_{\text{geom}}^2 + \sigma_{\text{sens}}^2 + \sigma_{\text{opt}}^2 + \sigma_{\text{disp}}^2}{N} + \sigma_{\text{track}}^2 + \sigma_{\text{strag}}^2 \qquad (1)$$

- σ_{geom} : Error resulting from width of FELs
- σ_{sens} : Error from finite pixel width
- σ_{opt} : Optical errors from mirror
- σ_{disp} : Error from chromatic dispersion
- σ_{track} : Tracking resolution of charged particle
- $\bullet~\sigma_{\rm strag}$: Angle straggling of charged particle in radiator

Time of Propagation

 Distance between intersection and FEL:

$$s_0 = R - d \tan \theta_p \qquad (2)$$

Optical photon path:

$$s = \frac{s_0}{\cos\varphi} \qquad (3)$$

with $\varphi = \pi/2 - (\theta_p + \theta_c)$

• Required TOP Resolution:

$$t = \frac{1}{n} \left| \frac{s_{\mu,\pi}}{v} - \frac{s_{\pi,K}}{v} \right| \quad (4)$$

Not feasible!

Photon Trapping

Photon trapping as a function of the polar angle, momentum, and particle species:

Analytical calculation possible Maximum trapping fraction: 70% Minimum trapping fraction: 60%

Photon Losses

Possibilities of photon losses:

- Trapped photons ε_{trap} (ca. 70%)
- Sensor losses ε_{pde} (ca. 90%)
- Optical losses ε_{opt} (ca. 10%)
- Ineffective area between bars ε_{geom} (ca. 20%)
- Propagation losses such as diffraction, scattering, and absorption $\varepsilon_{\rm prop}$ (ca. 5%)

Photon loss studies:

- $\bullet\,$ Created photons: $\mathit{N}_{tot}\approx1000$ per event
- Remaining photons:

$$\Rightarrow Ns \approx 20 \dots 60 \tag{5}$$

Angle Straggling

Figure: Angle straggling without and with additional tracking behind detector.

 \Rightarrow Additional tracking behind DIRC detectors required!

Dispersion Effect

Detector Resolution (Dispersion)

Detector Resolution

Figure: Detector Resolution for fused silica and pions.

Dispersion Correction

- Tilting upper face of prism for additional refraction
- Possible prototype in talk by Avetik

Dispersion Correction

Single Photon Resolution (Angle Scan)

Figure: Single photon resolution as a function of the particle polar angle

Detector Resolution (Bar Width)

Figure: Detector Resolution resolution as a function of the bar width

э

Sensor Size Scan

Figure: Sensor width scan with adapting mirror radius

Pixel Scan

Mustafa Schmidt

FDIRC Simulations

Conclusion & Outlook

- Small resolution of $\leq 1 \, \text{mrad}$ challenging but not impossible
- Dispersion: major influence on resolution \Rightarrow correction or optimization in sensor required
- Systematic error dominated by angle straggling: additional tracking with high resolution behind DIRC compulsory
- Optical resolutions in right order of magnitude
- Next step: Inserting all results in Geant4 top optimizing parameters simoultanously