
IEKP - KIT

Software Trigger Module (and Cut Framework)
Trigger Meeting.

Nils Braun, Thomas Hauth | September 7, 2016

www.kit.edu

http://www.kit.edu

Introduction

The Software Trigger Module

The software trigger module is a general module to perform cut decisions
needed in the HLT software.

Calculates predefined variables and applies predefined, downloaded
cuts (from the database) on the event.

Each event is classified as rejected or accepted.

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 2/27

Major features of the Software Trigger
Module

Centralized framework for all cuts and decisions applied for the HLT
software stack

Database up- and download of the cut settings and tag names

Versioning of all cuts through the condition database

Easy to extend calculation framework for variables needed in the cuts

Cuts based on the well-tested GeneralCut from the framework

Easy to use python interface for quick cut development

Nearly 100% unittest coverage

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 3/27

Usage in the HLT path

Fast-
Reco

STM
HLT
Reco

STM Storage
Selection Selection

Different Cuts on different positions in the path

Different variables to calculate - but using the same framework

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 4/27

Usage as a Cut Module

A Software Trigger Cut (the main entity used in the Software Trigger
Module) is defined by five properties:

The cut condition A string in a format known by the GeneralCut with
variables defined by the calculator you choose (see below).
Example: [visible energy < 1.8438] and

[highest 3 ecl <= 0.3999]

The cut type A reject or accept cut. See the next slide for the difference.

The prescale An accept cut can be statistically scaled down with this
factor (will only lead to a positive result in one of N cases).

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 5/27

Usage as a Cut Module

A Software Trigger Cut (the main entity used in the Software Trigger
Module) is defined by five properties:

The base identifier This string defines, which variables are calculated for
the event content. Also, you can only choose between cuts
with the same base identifier in one run of the software
trigger module.
Example: fast reco or hlt

The cut identifier This is the identifier making the cut downloadable from
the database. Two cuts with the same identifier but different
base identifiers are stored separately.
Example: reject bkg or accept ee

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 5/27

The three possible results

Each cut can either be an accept or a reject cut. The overall output of the
module depends on this. There are different possibilities:

acceptOverridesReject is set to False (default)
One of the chosen reject cuts is true: the whole event is tagged with
”rejected” and the module gives -1 as a return value
One of the chosen accept cuts is true and no reject cut is true: the whole
event is tagged as ”accepted” and the module gives +1 as a return value
No cut gives a true result: the whole event is tagged as ”don’t know” and the
module gives 0 as a return value

acceptOverridesReject is set to True
One of the chosen accept cuts is true: the whole event is tagged with
”accepted” and the module gives +1 as a return value
One of the chosen reject cuts is true and no accept cut is true: the whole
event is tagged as ”rejected” and the module gives -1 as a return value
No cut gives a true result: the whole event is tagged as ”don’t know” and the
module gives 0 as a return value

A cut gives a true result if its cut condition is true and, in cases of accept cuts, the pre

scale (drawn from a uniform distribution) also leads to a true result.

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 6/27

Choosing the correct database

It is very important to use the correct database tags for downloading the
cuts. We will first use the local database, then use the central database
with the software trigger cuts and in the end use the production database
for the other entries.

import basf2

basf2.reset_database ()

basf2.use_database_chain ()

basf2.use_local_database ()

basf2.use_central_database("software_trigger_test")

basf2.use_central_database("production")

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 7/27

Using the module
Make sure to include the database code snippet also in your steering file!

import basf2

path = basf2.create_path ()

Import the simulated events (or something analogous)

path.add_module("RootInput")

Reconstruct the information

needed for the fast reco decision

add_reconstruction(path , trigger_mode="fast_reco")

Add the cut module to the path

cut_module = path.add_module("SoftwareTrigger",

baseIdentifier="fast_reco",

cutIdentifiers =["reject_ee", "accept_ee", "reject_bkg"])

Create three new paths (filling is not shown)

events_accepted_path = basf2.create_path ()

events_rejected_path = basf2.create_path ()

events_dont_know_path = basf2.create_path ()

Do something with the result of the module

cut_module.if_value("==-1", events_rejected_path)

cut_module.if_value("==1", events_accepted_path)

path.add_path(events_dont_know_path)

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 8/27

From where to get the result

There are two possibilities to get the result of a Software Trigger Module
event:

1 The return value of the module is set to -1, 0 or +1, depending on the
results of the cuts.

2 The module writes the results of the individual cuts as well as the
total result to a StoreObj with the type SoftwareTriggerResult.

If you have more than one Software Trigger Module in your path, the
different cut results are all added to the result object.
You can get the results of the single cuts with the getResult function.
The total result can be calculated again using the getTotalResult

function, which needs the value of acceptOverridesReject as an
input.

The SoftwareTriggerResult may replace the HLTTag as an MDST
object, as it does not contain hard-coded cut tags.

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 9/27

Debug Output

The Software Trigger Module can output all calculated variables for each
event into a ROOT TNTuple file

import basf2

path = basf2.create_path ()

Add the SoftwareTrigger

path.add_module("SoftwareTrigger",

baseIdentifier="fast_reco",

cut_identifiers =[],

storeDebugOutput=True ,

debugOutputFileName="variables.root")

It is important to choose the correct base indentifier, because this defines
which variables are calculated and stored!

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 10/27

Debug Output - continue

After processing the path, a new ROOT file ”variables.root” are created
with a single TTree containing the calculated variables with as many rows
as there were events in the process.

from root_pandas import read_root

df = read_root("variables.root")

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 11/27

Cut Creation and Uploading

Create a reject cut (to reject background events after FastReco) and
upload it to the local database:

from ROOT import Belle2

from Belle2.SoftwareTrigger import SoftwareTriggerCut

from softwaretrigger import db_access

bkg_cut_st = SoftwareTriggerCut.compile(

"[[visible_energy < 1.8438] and

[highest_3_ecl <= 0.3999] and [max_pt <= 0.3152]]",

1, True)

db_access.upload_cut_to_db(bkg_cut_st ,

"fast_reco", "reject_bkg")

After that, the cut is stored in the same folder as you called the python
code from in a folder called ”localdb”. If you run your steering file
accessing this cut in this folder, you can use this new cut.

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 12/27

Cut Creation and Uploading - continue

If you are happy with the cut, you can go and upload it to the central
database. In the moment, I do not push to the production cut but rather
have created my own global tag (software trigger test). If you also
want to push to this tag, call

upload_localdatabase --tag software_trigger_test \

localdb/database.txt \

--final -exp 0

Of course, you are free to create your own global tag and push to this (or
push to another already present global tag). You just have to remember to
change to this cut also in your other steering files.

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 13/27

Where to find more information

All the code related to the Software Trigger can be found in
skim/softwaretrigger.

An example file of the usage is currently under construction in
skim/softwaretrigger/scripts/softwaretrigger/ init .py.

The shown information plus some more can be found at confluence
https://confluence.desy.de/display/BI/The+Software+

Trigger+Module.

If you are interested in updates, please follow the JIRA ticket
BII-1622 (https://agira.desy.de/browse/BII-1622).

In case of questions, please write a mail to nils.braun@kit.edu.

Software Trigger Module (and Cut Framework) - Nils Braun, Thomas Hauth September 7, 2016 14/27

https://confluence.desy.de/display/BI/The+Software+Trigger+Module
https://confluence.desy.de/display/BI/The+Software+Trigger+Module
https://agira.desy.de/browse/BII-1622

IEKP - KIT

Runtime Analysis and FastReco on real HLT
Hardware
Trigger Meeting.

Nils Braun, Thomas Hauth | September 7, 2016

www.kit.edu

http://www.kit.edu

Experimental Setup

Measurements on the Runtime of the full reconstruction was
performed on the HLT worker nodes.

In this talk: only single processing will be shown, multiprocessing is
under analysis in the moment.

All events were processed - cuts on the events were performed in
retrospect.

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 16/27

Average Event Processing Time (in ns)

Processing time depends heavily on the channel.
ECLExpert will not be taken into account in the following (under
construction).

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 17/27

Average Ratio of different FastReco
Modules

Optimization is currently done in the Legendre Track Finder and the
Quality Asserter.

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 18/27

Assumed Cross Section after Level 1

For calculating the average event time, a ratio of the different channels has to be
calculated.
The numbers are taken from ’Overview of the Belle II Physics Generators’ by P.
Urquijo and T. Ferber.
It is assumed, that the Level 1 has a background (and ee) rejection of 80 %.

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 19/27

Processing Time Scaled with Cross
Section

With these ration, the average processing time (without cuts) for one average event
is: 0.30 s
Assuming 6400 cores (without degregation because of hypertreading, IO, etc.) with
20 kHz (30 kHz), the limit is 0.32 s (0.21 s).

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 20/27

Usage in the HLT path

Fast-
Reco

STM
HLT
Reco

STM Storage
Selection Selection

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 21/27

Cuts applied after FastReco

The shown cuts are:

Background Cut

EE Cut

Hadron Cut

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 22/27

Average Processing Time After
FastReco Cuts

With these cuts, the average processing time is 0.198 s (was 0.30 s).
Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 23/27

Summary

Software Trigger Framework was introduced in basf2; some further
developments under way.

Single-Core measurements are promising - FastReco works quite
well.

Multi-Core measurements are preformed in the moment - network
streaming measurements are under construction.

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 24/27

Backup

Example for one variable: visible energy

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 26/27

Open Issues

Specialized prescale for Bhabha-Events according to event variables.

Variable Calculator for final HLT cuts not finished and committed yet.

Runtime Analysis and FastReco on real HLT Hardware - Nils Braun, Thomas Hauth September 7, 2016 27/27

