

Status of the Neurotrigger

Steffen Bähr, Sara Neuhaus, Sebastian Skambraks, Christian Kiesling

Institute for Information Processing Technologies (ITIV)

Introduction

The Neurotrigger

- A Z-Vertex track trigger for Belle II deployed on FPGAs
- Goal : Rejection of events from z != 0

Requirements

- Z-Vertex prediction < 2 cm
- Stay within demanded latency
- Manage resource consumption on FPGA

Offline Distribution of z in Belle

Methods

- CDC track segment data as input
- Multi Layer Perceptron for prediction of z-Vertex

Data Flow

Thank you Jae-Bak

MLP – Multi Layer Perceptron

- General
 - Supervised machine learning
 - Approximation of real valued function
 - Deterministic runtime

input hidden output layer layer layer

Structure of general MLP

Setup

- Consists of several neurons grouped into layers
- Neuron description : tanh($\sum_{k=0}^{n} x_k w_k + w_0$)
- 3 layers : input, hidden and output
- Output value interpreted as scaled z-vertex position
- Trained with rprop algorithm

Inputs for the MLP

crossing angle α

For each SuperLayer 1 hit is chosen

Each Hit has 3 Inputs in the MLP

Delta ID: Distance wire – track

T : Drift Time

Alpha: crossing angle

 $\mu \quad \Box$ Calculation of these inputs necessary before executing the MLP

Some Challenges

- How to handle missing hits from TSF?
 - Not every SuperLayer may contain a hit
- How to translate real valued MLP and necessary preprocessing to FPGAs ?
 - Usage of fixpoint calculation on the FPGA
 - Prediction quality cannot be decreased too much
 - Resources and latency to be kept in mind

Handling of Missing Hits

- MLP expects hit inputs for all SuperLayers
 - What to do in case a hit is missing for a SuperLayer?

- Default would be to set inputs for the respective SuperLayer to 0
- Usage of a specialized MLP, trained for having 8 Inputs is better
 - 5 Networks used: 1 for all hits present, 4 each for one of the stereo
 SLs missing a hit

Minimal Setup Achievements

- Minimal setup : consists of 5 MLPs due to missing hits
- Resolution of 2 cm can be achieved for pt > 500 MeV
 - Worse efficiency with background but still sufficient

Fixpoint Calculation Analysis

- Fixpoint values to be used throughout the FPGA
 - Width has to be as narrow as possible to allow for good routing
 - Preprocessing and MLP

IP tracks with background, 5 MLPs for different missing stereo hits

	φ	ω	α	ID_{ref}	$rac{N_{wires}}{2\pi}$	nodes	weights	tanh
fractional bits	12	14	12	8	8	12	10	10
maximum	π	0.015	$\frac{\pi}{2}$	288	61.1	1	$\lesssim 32$	4.85
total bits	15	9	14	18	14	13	16	10 ⁴ bins

Architecture of Neurotrigger on the FPGA

- Pipelined architecture for processing of data
- Inputs to be calculated using TSF Hits and 2D Data
 - Scaling and Calculation Modules
 - Hit Selection, rule-based selection of one Hit per SuperLayer
- MLP calculates the prediction for Z-Vertex

Implementation Status

- All stages of the Neurotrigger processing are implemented
 - Simulation shows no deviation from SW precision
- 2D-Data and ETF Data taking not finished
 - Currently assuming fixed Input / fastest time (see Cosmic Ray test setup)

Implementation Characteristics

- Latency
 - MLP currently takes 10 Clock Cycles
 - Preprocessing depends :
 - TSF Hit Processing takes around 5 Clock Cycles
 - 2D Track Processing takes around 10 Clock Cycles
 - Total Latency right now at 20 Clock Cycles
- Resources (xc6vhx380)
 - DSPs pretty much used up completely: 93 % Usage
 - BRAM: 57 % Usage
 - SLICES: 48 % Usage

Implementation Tool Usage Considerations

- The achievable clock frequencies heavily depend on the used tool
- Comparing implementation using Synopsys and Xilinx XST (default in ISE)
 - Synopsys Clock Frequency for MLP at: 205.4 MHz
 - ISE Clock Frequency for MLP at: 127.28 MHz
- Synopsys Tools seem to implement pipelined adder trees much better than XILINX's XST

Currently Tested Setup of the Neurotrigger

- So far all processing stages of Neurotrigger tested in simulation and by using a loopback test
 - No problems with size or latency encountered

Cosmic Ray Test Setup

- Idea: Use data from test to confirm correct processing
- Assume 2D finder and event time are not present
 - Default tracks are used to generate Inputs for the MLP
 - Fastest drift time (no background) is used
- TSF Data from all SuperLayers necessary, since no 2D Data available

Outlook 3D-Finder

- Usage of 3D Track Finder as a preprocessing stage of the neural network
 - Additionally uses information from stereo layers
- Based on 3D Hough transformation

Estimating memory consumption only, implementation could be

possible

Open Questions

- Testing State
 - Extend Loopback Test to actual data from TSF
 - Is data from CDC available? Captured by Pocket DAQ?
- Interfacing

- Monitoring of correct Neurotrigger processing
 - How to Monitoring the correct execution of the neural network?
 - Save data via B2Link and check with SW afterwards?
- How to implement 3D-Finder on the same board

Conclusion

- Using MLPs on FPGAs to estimate z-vertex
- All stages of the processing implemented and fixpoint calculation matches target
- Currently tested in loopback mode
- Tests with TSF data pending
- Upgrade possibilities using 3D-Finder

Thank You