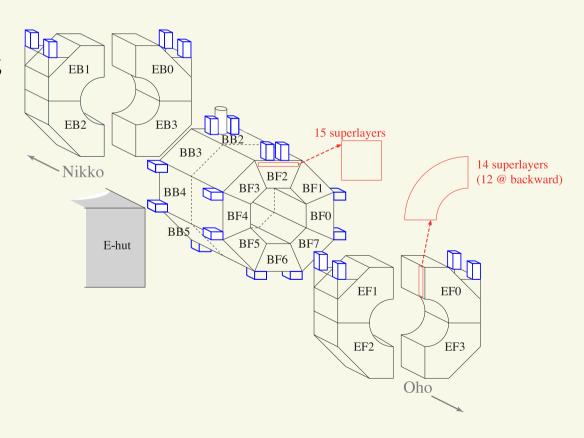


KLM TRIGGER STATUS AND PLAN

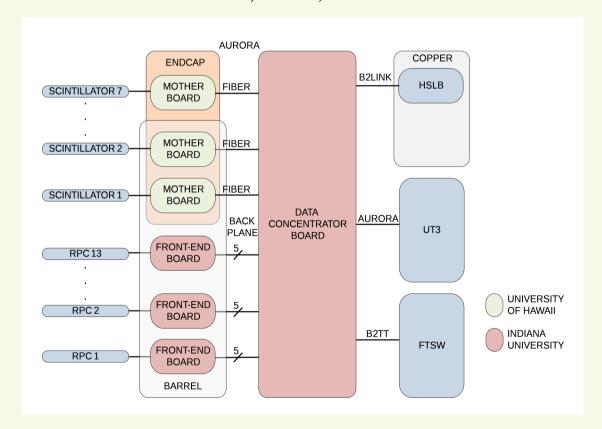
Dmitri Liventsev

(Virginia tech/KEK)

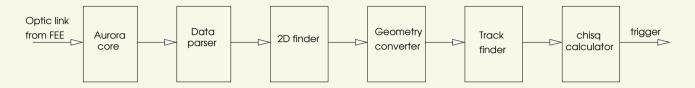

Belle II trigger/DAQ workshop, BINP, Novosibirsk, September 05–07, 2016

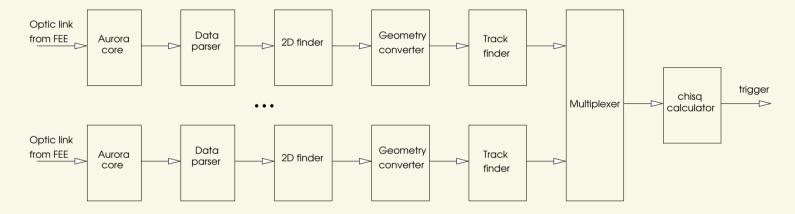
- ✓ KLM structure overview
- ✓ KLM trigger design
- ✓ Trigger status and plan

KLM structure


- KLM is divided into a barrel and endcaps;
- The barrel is divided into forward and backward halves,
 - eight sectors (octants) in each half,
 - 15 layers in each sector;
- Endcaps are divided into four sectors (quadrants) each,
 - 14 layers in the forward endcap;
 - 12 layers in the backward endcap;
- Two inner barrel layers and entire endcaps are instrumented with scintillator strips;
- 13 outer barrel layers are instrumented with RPCs.

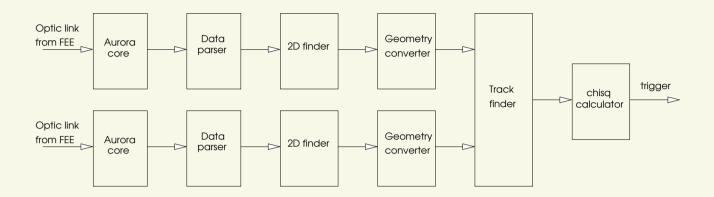
Readout electronics


- Each module is connected to a FE board;
- In the barrel all FE boards of the same sector are connected to one data concentrator.
- In the endcaps all FE boards of the same sector are connected to two data concentrators.
- Data concentrators talk to FTSWs, UT3, COPPERs.


KLM trigger scheme: barrel

Baseline (implemented):

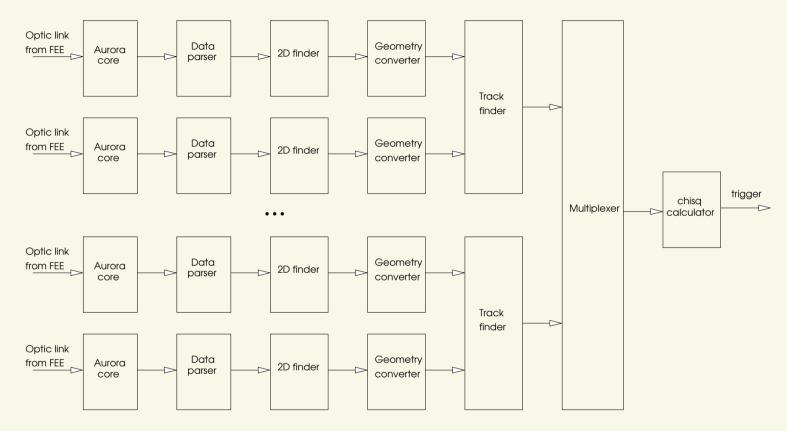
Alternative:



- \checkmark One optic link per sector (16 sectors at all);
- ✓ Sectors are processed independently in parallel; tracks are assumed to be confined in a single sector.
- ✓ Individual sectors trigger outputs are ORed;
- ✓ Mathematics in FPGA are very resource demanding. Decreasing number of χ^2 calculators we can save resources.

KLM trigger scheme: endcap

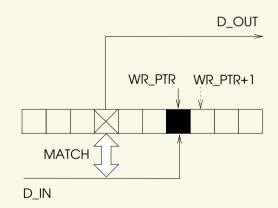
Baseline:



- ✓ Two optic links per sector (8 sectors at all);
- ✓ Sectors are processed independently in parallel; tracks are assumed to be confined in a single sector.
- ✓ Individual sectors trigger outputs are ORed.

KLM trigger scheme: endcap (2)

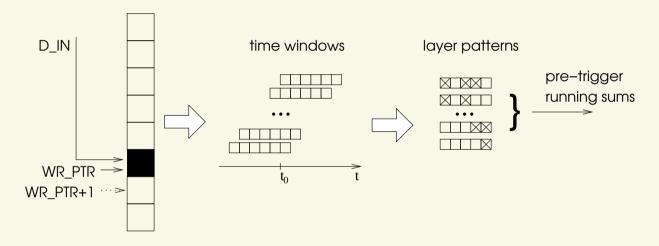
Alternative:


- ✓ Two optic links per sector (8 sectors at all);
- \checkmark Mathematics in FPGA are very resource demanding. Decreasing number of χ^2 calculators we can save resources.

Components functionality

- Data parser deserializer (three words \times two bytes \Rightarrow 41 bits). Three clock cycles per hit.
- \triangleright 2D finder searches for matches of 1D hits in coincidence window of six cycles of 127MHz clock (\sim 47ns).

1D hit storage is divided into small parts for different layers and detector strip orientation (axis). Match only against proper 1D hits (layer, axis). 1 + N(2D) clock cycles.



Geometry converter – maps layer and channel numbers to coordinates (x, y, z). LUT and some arithmetic. One clock cycle.

Components functionality (2)

Track finder – checks 2D hits in coincidence window of six cycles of 127MHz clock (\sim 47ns) searching for a track. If found, generates a pre-trigger and running sums needed for χ^2 calculator. Two clock cycles.

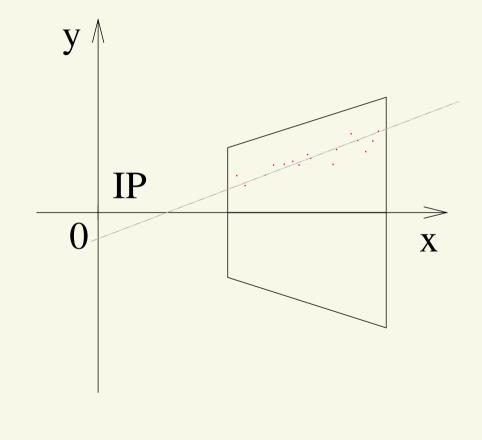
- $imes \chi^2$ calculator assumes that track is a straight line; using running sums provided by the track finder calculates track parameters, impact parameter and $\chi^2 \times \mathrm{ndf}$ of the track.
 - 31 clock cycles (23 for a division).

χ^2 calculation

A straight line $y = a \cdot x + b$ fitting to n points (x_i, y_i) is given by

$$a = \frac{n \cdot s_{xy} - s_x \cdot s_y}{D}$$
, $b = \frac{s_y \cdot s_{xx} - s_x \cdot s_{xy}}{D}$, where $D = n \cdot s_{xx} - (s_x)^2$,

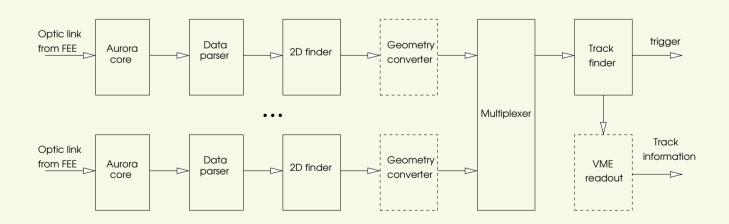
and

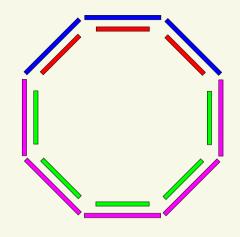

$$s_x = \sum x_i, \quad s_{xx} = \sum x_i^2,$$

$$s_y = \sum y_i, \quad s_{xy} = \sum x_i \cdot y_i.$$

Then impact parameter $d_{\rm ip}$ and χ^2 are given by

$$d_{\rm ip}^2 = \frac{b^2}{1+a^2} \simeq b^2(1-a^2) \quad (a \sim 0.5),$$


$$\chi^2 \cdot n = \sum (a \cdot x_i + b - y_i)^2.$$



KLM trigger for TOP

- Barrel KLM may be used to generate a trigger for TOP.
- Only scintillator KLM layers are used (no FEE for RPCs yet).
- Scintillator modules are combined into four groups (shown by different colors).
- Trigger is generated when we have simultaneous 2D hits in all four groups.
- Firmware is written based on the general KLM trigger firmware.

KLM trigger status and plan

- ✓ All components of the KLM trigger are written. Some are tested, some need testing.
- ✓ KLM trigger for TOP written but not used yet due to FEE unavailability. Hardware (boards, fibers, cables) is ready; Isar (UH) is coming to KEK in the middle of September to connect and test it.
- ✓ After extensive optimization and streamlining the full KLM trigger for TOP firmware meets timing and resource requirements.
- ✓ KLM trigger stream recorder is used for the analysis of the data stream from data concentrators to verify changes made by Isar and Brandon (IU) to FE and DC firmware.
- Update tsim to the present state of the FW.
- > Properly test all components with simulation.
- Test the FW with random data and real data with tsim and UT3 using VME readout.
- Provide a KLM trigger for TOP.
- > Further optimize FW to increase memory depth.