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DAQ database
• Configuration DB explains DAQ initial setups at (re)start of runs 

– Parameters into FEE registers

– Software settings (ref. # of condDB, HLT scripts, running RC nodes, etc) 

– Power supplies (running channels, voltages etc.)

=> DAQ configuration DB except for PXD

=> PXD configDB maintained by M. Rizert

• Logger DB shows histories of detector status and DAQ activities

– Text messages with severity from DAQ processes

=> NSM2 message collector to DB is running 

=> JMS based framework for PXD system

– Monitored values collected via NSM2/EPICS records

=> CSS channel archiver modified M. Rizert
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Configuration DB
• Configuration DB is based on

– Text parser into objects with nested structure 

– DB tables to contained objects by spiting variables into table rows

• Conversion between text and DB entries are done by CLT

– Text -> DB : daqdbcreate <filepath> <tablename>

– DB -> text (stdout) : daqdbget <tablename> <configname> 

• Snapshot of a config entry (edited by manual) is recorded before run start

– Assigned unique label : <nodename>@<expno>:<runno>:<subno>:<start/end>

– Same daqdb tools are available

• Python utility is needed but not available yet (my homework)
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Creation new configuration
• New configuration can be created from a text file as input:

– ex.) $ daqdbcreate cpr.conf cdc
$ daqdbcreate fee.conf cdc

• Each configuration is identified by a configname

– Assigned a configname as (nodename@)config
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config      : cdc:fee:cpr2060:a:suppress:037

firm        : recbe_v50_16070501.bit
mode        : suppress
delay.val   : 105
window.val  : 16
tdcth.val   : 3750
adcth.val   : 2
ped[0].val  : 228
ped[1].val  : 231
ped[2].val  : 230
~~
ped[47].val : 234

nodename          : CPR2060
config            : RC:raw:2016:05:06:03

hostname          : cpr2060
copperid          : cpr2060
hslb[0].used      : true
hslb[0].dummyhslb : false
hslb[1].used      : true
hslb[1].dummyhslb : false
hslb[2].used      : true
hslb[2].dummyhslb : false
hslb[3].used      : true
hslb[3].dummyhslb : false
fee[0].fee        : object(cdc:fee:cpr2060:a:raw:)
~~

cpr.conf fee.conf

search for the latest 
config named with
"cdc:fee:cpr:2060:a:raw:" 



Configuration and RC state
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• CONFIGURE carries out replacement of configuration

– ex) calibration -> physics 

– Manual modification is reset

Parameter is not editable
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Configuration of DAQ components
(current situation)

• TTD 

– Mapping (ttaddr): hard corded in header files

– ?? : beyond my mind ...

• COPPER/ROPC : in config. DB

– FEE parameters : in config. DB

– Streaming files: in local disk (paths are in DB)

– eb0 / eb1tx : in config. DB

• HLT : in text files 

– basf2 scripts are called in a python script

• The scripts are determined in the text files

– eb1rx : in config. DB

• Storage : in config. DB including eb2rx

• Express reco : in text files (same as HLT)

6



Logger DB (text message)
• Text Logger DB is based on

– NSM2 based message transportation ("LOG" request)

– Parser and Deparser of text messages 

• Command line tools to dump messages into texts are available 

– daqlogget <nodename> [<date>] [severity]

– Web based view is also available

• Data size estimation is not done yet (homework)
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Log collection scheme

• Log message collection via NSM2

• logcollectord : log message collector daemon

– Unique in a NSM2 segment

• Each collector has unique NSM2 name to identify the segment

– Accept NSM message labeled by "LOG"

– Send to GUI (CSS) and database 
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How to send log
slow control C/C++ libraries are available to implement codes to send logs

• From HLT basf2 codes

– B2FATAL, B2ERROR, B2INFO are redirected to HLT slow control

– HLT Log collection functions are newly developed by Itoh-san

• From slow control programs

– Implemented in a C++ Class extending NSMCallback

– log (<priority>, <message>) (a class method of NSMCallback)

• From FEE handler

– Implement in FEE::monitor(RCCallback& callback, HSLB& hslb)

– callback.log(<severity>, <message>)

• From generic NSM programs

– call b2nsm_sendany(node, "LOG", npar, pars, len, msg, NULL)

– node = NSM name of logcollectord

– pars = 0 or 1, pars[0] = severity (DEBUG:1-6:FATAL), par[1] = UNIX time

– msg = C string for text message, len = strlen(msg)
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How to handle log severity
• Log priorities : DEBUG < INFO < WARNING < ERROR < FATAL

=> Question : What slow control should do for error logs?

– DEBUG : (current) nothing shown on GUI but recorded into DB

– INFO : (current) shown on GUI and recorded into DB

– WARNING : (current) shown on GUI and recorded into DB

– ERROR : (current) shown on GUI and recorded into DB

– FATAL : (current) shown on GUI and recorded into DB

• Should run control suspend / abort runs according to log priorities?

– INFO / WARNING : Nothing to do

– ERROR : Suspend run. Trigger is stopped but others are still running 

– FATAL : Abort run. All subsystems are back to NOTREADY

• Other NSM messages "ERROR" and "FATAL" can be sent to runcontrold

– ERORR and FATAL abort the current run
=> ALL components are back to be "NOTREADY"

– Should logcollectord redirect error log messages to runcontrold?
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Currently
No difference 



Exporting DAQ DB
• Replication of database itself

– DAQ accepts postresql (5432) port from KEKCC

– Native method (or popular) methods of PostgrelSQL replication

– Config DB is converted into Cond DB for offline usage

• Transport dumped files for monitoring

– http (80) access to get files by wget or curl

– KEKCC side downloads files periodically (one per day?)

• Yamagata-san and T.Hara-san are negotiating with KEKCC to open connection

– Much complicated concerns in network security

– Closed network and restricted ports are available
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How to use config. DB in offline
• Copy of configuration is stored in each run start/end

– Stored in different DB tables : ex) cdc -> cdc_log

• Offline people will convert the replica of config DB to condDB

– I have no idea who takes care and how they convert yet...

• But config DB itself is available for basf2 software since the codes in basf2

• There are many possibilities to access configuration:

– (1) Access to Cond DB with converted configurations

– (2) Direct access to config DB clone

– (3) Text files dumping the configuration from config DB
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Summary

• DAQ use database for configuration and logging

• Configuration DB is used in many parts of DAQ components

• Message logging scheme is also in operation

– HLT log collection is newly implemented

• Infrastructure of DB replication is designed by Yamagata-san

• Conversion of config DB to cond DB is still unclear

– Usage in offline is also not clear yet
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