DAQ database

<u>Tomoyuki Konno</u>

TRG/DAQ workshop 2016, Budker Institute of Nuclear Physics, Novosibirsk

DAQ database

- Configuration DB explains DAQ initial setups at (re)start of runs
 - Parameters into FEE registers
 - Software settings (ref. # of condDB, HLT scripts, running RC nodes, etc)
 - Power supplies (running channels, voltages etc.)
 - => DAQ configuration DB except for PXD
 - => **PXD configDB** maintained by M. Rizert
- Logger DB shows histories of detector status and DAQ activities
 - Text messages with severity from DAQ processes
 - => NSM2 message collector to DB is running
 - => JMS based framework for PXD system
 - Monitored values collected via NSM2/EPICS records
 - => **CSS channel archiver** modified M. Rizert

Configuration DB

- Configuration DB is based on
 - Text parser into objects with nested structure
 - DB tables to contained objects by spiting variables into table rows
- Conversion between text and DB entries are done by CLT
 - Text -> DB : daqdbcreate <filepath> <tablename>
 - DB -> text (stdout) : daqdbget <tablename> <configname>
- Snapshot of a config entry (edited by manual) is recorded before run start
 - Assigned unique label : <nodename>@<expno>:<runno>:<subno>:<start/end>
 - Same daqdb tools are available
- Python utility is needed but not available yet (my homework)

Creation new configuration

- New configuration can be created from a text file as input:
 - ex.) \$ daqdbcreate cpr.conf cdc
 \$ daqdbcreate fee.conf cdc
- Each configuration is identified by a configname
 - Assigned a configname as (nodename@)config

Configuration and RC state

- CONFIGURE carries out replacement of configuration
 - ex) calibration -> physics
 - Manual modification is reset

Configuration of DAQ components (current situation)

- TTD
 - Mapping (ttaddr): hard corded in header files
 - ?? : beyond my mind ...
- COPPER/ROPC : in config. DB
 - FEE parameters : in config. DB
 - Streaming files: in local disk (paths are in DB)
 - eb0 / eb1tx : in config. DB
- HLT : in text files
 - basf2 scripts are called in a python script
 - The scripts are determined in the text files
 - eb1rx : in config. DB
- Storage : in config. DB including eb2rx
- Express reco : in text files (same as HLT)

Logger DB (text message)

- Text Logger DB is based on
 - NSM2 based message transportation ("LOG" request)
 - Parser and Deparser of text messages
- Command line tools to dump messages into texts are available
 - daqlogget <nodename> [<date>] [severity]
 - Web based view is also available
- Data size estimation is not done yet (homework)

Log collection scheme

- Log message collection via NSM2
- logcollectord : log message collector daemon
 - Unique in a NSM2 segment
 - Each collector has unique NSM2 name to identify the segment
 - Accept NSM message labeled by "LOG"
 - Send to GUI (CSS) and database

How to send log

slow control C/C++ libraries are available to implement codes to send logs

- From HLT basf2 codes
 - B2FATAL, B2ERROR, B2INFO are redirected to HLT slow control
 - HLT Log collection functions are newly developed by Itoh-san
- From slow control programs
 - Implemented in a C++ Class extending NSMCallback
 - log (<priority>, <message>) (a class method of NSMCallback)
- From FEE handler
 - Implement in FEE::monitor(RCCallback& callback, HSLB& hslb)
 - callback.log(<severity>, <message>)
- From generic NSM programs
 - call b2nsm_sendany(node, "LOG", npar, pars, len, msg, NULL)
 - node = NSM name of logcollectord
 - pars = 0 or 1, pars[0] = severity (DEBUG:1-6:FATAL), par[1] = UNIX time
 - msg = C string for text message, len = strlen(msg)

How to handle log severity

- Log priorities : DEBUG < INFO < WARNING < ERROR < FATAL
 => Question : What slow control should do for error logs?
 - DEBUG : (current) nothing shown on GUI but recorded into DB
 - INFO : (current) shown on GUI and recorded into DB
 - WARNING : (current) shown on GUI and recorded into DB
 - ERROR : (current) shown on GUI and recorded into DB
 - FATAL : (current) shown on GUI and recorded into DB
- Should run control suspend / abort runs according to log priorities?
 - INFO / WARNING : Nothing to do
 - ERROR : Suspend run. Trigger is stopped but others are still running
 - FATAL : Abort run. All subsystems are back to NOTREADY
- Other NSM messages "ERROR" and "FATAL" can be sent to runcontrold
 - ERORR and FATAL abort the current run
 => ALL components are back to be "NOTREADY"
 - Should logcollectord redirect error log messages to runcontrold?

10

Currently

No difference

Exporting DAQ DB

- Replication of database itself
 - DAQ accepts postresql (5432) port from KEKCC
 - Native method (or popular) methods of PostgrelSQL replication
 - Config DB is converted into Cond DB for offline usage
- Transport **dumped files** for monitoring
 - http (80) access to get files by wget or curl
 - KEKCC side downloads files periodically (one per day?)
- Yamagata-san and T.Hara-san are negotiating with KEKCC to open connection
 - Much complicated concerns in network security
 - Closed network and restricted ports are available

How to use config. DB in offline

- Copy of configuration is stored in each run start/end
 - Stored in different DB tables : ex) cdc -> cdc_log
- Offline people will convert the replica of config DB to condDB
 - I have no idea who takes care and how they convert yet...
- But config DB itself is available for basf2 software since the codes in basf2
- There are many possibilities to access configuration:
 - (1) Access to Cond DB with converted configurations
 - (2) Direct access to config DB clone
 - (3) Text files dumping the configuration from config DB

Summary

- DAQ use database for configuration and logging
- Configuration DB is used in many parts of DAQ components
- Message logging scheme is also in operation
 - HLT log collection is newly implemented
- Infrastructure of DB replication is designed by Yamagata-san
- Conversion of config DB to cond DB is still unclear
 - Usage in offline is also not clear yet