DAQ operation in cosmic/Phase II

- 1. DAQ Integration for GCRT
- 2. Local run DAQ
- 3. Error handling

S. Yamada (KEK, IPNS)

1, DAQ Integration for GCRT

Schedule – possible modification

Partitioned DAQ operation during Phase II run

DAQ Integration schedule

	Key events	Combined global DAQ (only one system can be operated.)	Standalone global DAQ (independent trigger source and event-building)
Aug.			
Sep.			CDC(+TOP M01), TOP, bECL, KLM
Oct.	CDC installation ->		CDC, TOP, bECL, KLM
Nov.	(KLM trg for TOP)? →	CDC+TOP+bECL+KLM	
Dec.	eECL(BW) install	CDC+TOP+ECL+KLM	Sometimes each sub-detector will take data separately.
Jan.	Global CRT starts		

DAQ issues

Run coordination(local run or GCRT run), shifter, elog, runsheet and database, etc should be considered, which will be a prototype of those in phase II run. We don't have a concrete plan yet.

As for run-coordination, at the beginning, I think that [DAQ experts + CRT coordinators from each sub-detector group] can discuss and decide the run coordination.

With the experience, we will start making a framework for the phase II run.

2. Local calibration run

Local run:

- -> Independent Trigger Timing Distribution and data-flow It is basically same as the current CRT situation.
- -> Partition DAQ system can be used.

Issues to be solved (R.Itoh @ the last TRG/DAQ WS)

- 1. Trigger
 - a) Local run
 - * Each detector group is supposed to provide the specific trigger for the calibration
 - b) Partitioned DAQ

* Two (or more) different trigger sources has to be managed by trigger system ex. Beam trigger for Beast II run + Cosmic ray trigger for outside detectors

- 2. Timing distribution
 - a) Local Run

Trigger distribution to FEE is supposed to be managed be each detector. Local run trigger is fed to the FTSW.

b) Partitioned DAQ

The 2nd (or 3rd) master FTSW is placed on the top of FTSW. How to manage the wiring between down-stream FTSWs? Possible to manage "logically" by sharing the same wire connection?

- 3. Data Stream
 - a) Local Run/ Partitioned DAQ
 - * Multiple COPPER crates + partial event building + single -----age unit
 - * Simultaneous operation of multiple streams.
 - * Number of HLT/Storage units is not enough to manage
- 4. Run control
 - a) Local Run / Partitioned DAQ
 - * Multiple run control scheme sharing the same slow control scheme.

TRG/sub-detector group

Two combined TTD trees are not(will not be) available.

② Already demonstrated for CDC and ECL CRT.

☺ Already demonstrated for CDC and ECL CRT.

DAQ group's policy for local run:

The TTD and DAQ system should be same as used for physics run.

Issues to be considered

Therefore, for example, we'd like ask sub-detector groups to do the following;

1. Trigger source:

-> Let trigger signal go through the FTSW system so that FTSW can handle busy-handshake and COPPER can build events from the 4 HSLBs.

2. Event

➤ If you split one event to 16, event # attached in header should be modified so that it is incremented by 1 to make backend DAQ work consistently.

If event-tag will be incremented by 1, these tentative measures are not needed.
e.g.: event0 fragment 0 -> tttag = 0, event0 fragment 1 -> tttag=1, ...,
Even in this case, online-event building with other sub-detectors or TRG data is not possible.

3. Location of data-file

3, Error handling in DAQ operation

Example: the DESY VXD beam test in April

Hopefully, the next DESY beam test or phase II run will be:

The error diagnostic system should;

- Provide information to shifters what to do
 - A) Please call ***gr. experts.
 - B) Please restart the run and email to ** experts. If the error is not recovered, please call ** gr experts.
 - C) I don't know what to do. (The system needs not to cover all errors. Covering 80% of the total occurrences is fine.)
- be able to be used by shifters without reading instruction, otherwise the system may not be used.

For errors in the prev. DESY test (1)

- (A) Call *** experts
- (B) Restart the run and email to experts
- C) Don't know the cause of the error.

How DAQ was stopped unexpectedly in the last DESY VXD beam test:

- Failed to start run (stop->abort->load->start)
 - ➤ Failed to establish network connection with ONSEN -> (B) [DAQ]
 - ➤ Remaining process in the prev. run occupied a port on COPPER CPU -> (B) [DAQ]
 - -> DAQ issue
- After DAQ starts running
 - > HLT crashed -> tracking issue
 - ➤ Mainly due to error handling in tracking modules (e.g. Uncaught exception) -> (B) [tracking]
 - > Event mismatch occurred in the DESY test in 2014 did not stop DAQ this time
 - ➤ But when ONSEN sent corrupted data to eb2, where magic word was never found, DAQ got stuck. -> (B)[DAQ/ONSEN]
 - DHC/DHE busy -> FW(HW) issue -> (A)[DHH]
- Data quality is not good.
 - Event mixing in an event data -> FW(HW) issue
 - Different event # info. between ONSEN(HLT) and DHC
 - Different event # info. Between DHC and DHEs
 - -> When it is observed for the first time -> (C). After investigation, it will become (B)[DAQ/ONSEN/DHH].
 - Checked by experts with Data quality monitor -> mis-config. etc -> (A) [SVD/PXD]
 - -> Accumulating knowledge of frequent errors is important for efficient error handling.

When errors occur, currently we check; 1, log message from DAQ processes yamadas@ttd1:/home/usr/yamadas statf://version/20160712 FTSW #200 / ft3o041a - 2016.07.27 14:35:00.794 2, output of statft 3, status indicator of SLC system Hz) -> 0(0,0Hz) -> 0(0,0Hz) Diagnose these info. and provide shifters what to do. CDC07.opi 23 Run control dead 0.00% (t=0.00% c=0.00% p=0.00% f=0.00% r=0.00%) for RC_CDC CPR2047 RUNNING HLT_CDC Trigger limit CPR2051 CPR2052 CDC07 RUNNING STOP Trigger In 0.5 [Hz] RUNNING TTD_CDC 0.5 [Hz] ABORT CPR2046-a Output to FEE Logs from DAQ global CPR2046-b CPR2046-c CPR2046-d CPR2047-a 69 suppri 69 suppress CPR2047-b CPR2047-c 69 suppress CPR2047-d 69 suppress CPR2050-a 69 suppress STORE_CDC alicdicicosm CPR2050-b Logs from COPPE CPR2050-c basf2 : run 412 sub 0 Event CPR basf2 : run 412 sub 0 Event Message basf2: run 412 sub 0 Event basf2 : run 412 sub 0 Event windows to basf2 : run 412 sub 0 Event basf2 : run 412 sub 0 Event shifters? 33:33 3 CPR20 INFO Bella Harrigger DAO Warkshop 2016 18

When errors are detected by ROPC/COPPER DAQ software:

- Errors in data(header/trailer)
 - No magic words
 - > Error of checksum attached by COPPER driver (after b2link)
 - Different event # between HSLBs on a COPPER
 - Event # jump, COPPER counter jump
- -> Tagged as [FATAL] in log message so that the diagnostic system can know the problematic DAQ part by searching [FATAL] in the log.

2. Data stream errors:

- "Connection reset by peer" -> This occurs because other processes dies due to some errors.
- -> Ignore the error.

When trigger is stopped:

- ▶ [BUSY] is usually caused by backend DAQ error.
 - -> check log messages.
- > [ERROR]
 - > feeerr
 - call sub-detector DAQ experts ?
 - b2link down
 - Call DAQ experts to reestablish the link.

Hopefully, Nakao-san's b2tt update will help to pin down the error source and its cause.

- Two registers as window to access more bits
 - 2-bit #hop, 6-bit type, 24-bit data
 - reg1 is state dependent, to tell error source upon error
 - If no error, b2ltag to tell how many events are written to belle2link
 - reg2 is user controlable to access more info

<u>Summary</u>

- DAQ integration is on-going towards global CRT.
 - First, independent CRT system will be running and after KLM trigger is ready, I think that combined (CDC+TOP+ECL+KLM) can be started.
- > DAQ system for local run in phase II/III is considered.
 - Our policy is using partitioned DAQ system, whose hardware/software of DAQ/TTD system should be same as for physics run.
 - ➤ Inputs of local run plan from sub-detector groups are important for the preparation.
- Towards phase II run, error handling system should be prepared so that non-experts can deal with error situation.
 - The system should tell shifters what kind of error is occurring and what you can do or whom you should contact with.