

Commissioning of the Beam Instrumentation System of CSNS

Jilei Sun On behalf of BI group of CSNS, IHEP

> AFAD 2021 March 16-18, 2021

Outline

CSNS Overview

Performance of BI system during commissioning

Summary

CSNS Overview

Layout of CSNS

Beam Power History

Beam instrumentation system

LINAC commissioning

Commissioning and installation goes in parallel

Ion source, RFQ, MEBT and DTL1 was installed in beam tunnel in 2016.

Beam parameters:

- 20 MeV
- 1Hz, 10 mA max.

D-plate after DTL1

- 2 FCT
- 1 CT
- 1 Wire Scanner
- 1 EM
- Beam Dump

Layout of the D-plate

LINAC commissioning results

Emittance

- Double-slits + Faraday cup
- Run at 1 Hz, 50 µs

Graphite plate on the first slit to protect the cooper plate from the thermal deposition

MEBT PARMILA simulation result: $\varepsilon_x = 0.152 \pi \text{ mm mrad}$

MEBT measurement result: $\epsilon_x = 0.16 \pi \text{ mm mrad}$

Beam phase

Bergoz FCT

- Domestic customized electronics for phase measurement.
- Stability within ± 0.5 °

DTL1 Phase Scan

Beam energy measurement by two methods

- Phase scan
- ToF

	Design	Phase scan	ToF
	[MeV]	[MeV]	[MeV]
RFQ	3.026	3.029	3.027 ± 0.01
DTL1	21.669	21.802	21.685 ± 0.01
DTL2	41.415	41.52	41.566 ± 0.14
DTL3	61.072	60.917	61.09 ± 0.34

Energy deviation < 1%

Current monitor

Beam Current Monitor @LINAC

- Magnetic ring from Bergoz
- Magnetic ring from domestic company

(Cobalt-base alloys, $\mu_r \approx 20,000 \sim 25,000 @25$ Hz)

- Coil number: 150
- Amplitude droop < 1%
- Rising time $< 1 \ \mu s$

Current monitor

Beam Current = [Sum(Valid) – Sum(Background)] / n

Integrated waveform value for the particle number calculation

Two special beam current monitor

LDBTCT01流强

Strip foil efficiency

BLM

■ Ion chamber: Ar+N₂, BF₃

- Direct output for instant beam loss protection: rise time ~ 7 μ s
- Integrated output for continuous low beam loss (one period) protection

Backgrounds subtracted in software level

BLM

- Experiment on low energy beam loss detection
 - Fast neutrons can be moderated to thermal neutrons by polyethylene (PE), and detected by BF₃.
 - BF_3 type BLM covered by 7.5 cm thick PE located under DTL1 (beam energy ~15 MeV)
 - BF₃ signal is ~1757 times higher than Ar+N₂, agrees well with theoretical calculation (~1600)

Profile monitor

Wire scanner

- MEBT (3 MeV): Carbon wire, 30 µm
- LRBT (80 MeV): Tungsten wire, 50 μm

Multi-wire

- In front of beam-dump
- Injection area

LRWS02 @ 2017.05

45*#

Bias voltage experiment

- Positive bias applied for H- measurement to enhance the S/N ratio
- A 20 V bias should be satisfy the profile measurement

Verification of the BLM sensitivity

- Current intercepted by the wire can be calculated theoretically
- BLM sensitivity to the beam is better than 100 nA

Beam profile plotted by wire signal and downstream BLM signal. 19

LINAC-IPM

Image acquisition type IPM

- Need carefully study
- Image profile size varying with the beam current, while beam repetition rate, pulse width and camera configuration keep remain

RCS&RTBT Commissioning

RCS – DCCT / SCT

DCCT: Commercial product from Bergoz

SCT: Self developed sensor and electronics

BPM

RCS & RTBT

- Cylindrical shoebox type
- Self-developed electronics, TBT or COD mode
- RTBT: commercial electronics from Libera Spark

RCS – BLM

CSNS

75 ion chamber

12 more ion chamber mounted at injection and collimation area

10 Plastic scintillator + photomultiplier

RCS-Wall current monitor

Band width > 100 MHz NI PXI-5124 Oscilloscope + LabVIEW GUI

Bunch phase with respect to RF signal

Longitudinal phase space tomography

RCS-IPM

- An Ionization Profile Monitor (IPM) has been developed and mounted in beam tunnel.
- Electron collection, HV up to -50 keV
- Magnetic field up to 0.2 T

Many thanks to Dr. Kenichirou Satou from J-PARC for his generous help.

Profile Monitor @PWB

Multi-wire profile monitor

RTBTWS&RDMWS&Tar

RTWS01 RTWS02 RTWS03 RTWS04 RTWS05 RTWS06 RTWS07 RTWS08 RDMWS Target MWS Target Temperature

- CSNS has achieved its design goal of 100 kW, Feb. 2020, 18 months ahead of schedule, and running @100 kW stably since then.
- For beam instrumentation, all subsystems perform well, we are keep developing, improving and updating.
- CSNS-II is now on the agenda, the beam power will be increased to 500 kW.

Thanks for your attention!