

Operation Status of PAL-XFEL

2021. 3. 18

Changbum Kim on behalf of PAL-XFEL Pohang Accelerator Laboratory

Contents

- PAL-XFEL
- FEL optimization process
- Hard X-ray Self-seeding FEL generation
- Other activities and plan

PAL-XFEL

Apr. 2011: PAL-XFEL project started (Total Budget: 400 M\$)

Apr. 2016: Commissioning started

Jun. 2017: User-service started - 120 days for user (>95% of availability)

Achieved in 2018

- 140 days for user (>95% of availability)
- HX self-seeding commissioning

Achieved in 2019

160 days for user (96.8% of availability) 60 Hz operation started

Achieved in 2020

- 170 days for user (96.9% of availability)
- HX self-seeding user service started

Beam Service Statistics

User Service Schedule

AFAD-2021 18 Sep. 2021

POHANG ACCELERATOR LABORATORY

FEL Energy in 2020

FEL Optimization Process

- 1. Beam based alignment in undulator section
- 2. Lattice matching in undulator and linac
- 3. Undulator offset tuning
- 4. Undulator gap tuning
- 5. Undulator tapering tuning
- 6. Phase shifter gap tuning

Undulator BBA

- Beam positions are measured at four different beam energy: 4, 5, 7, 10 GeV
- BPM offsets and quad offsets are calculated to get dispersion-free straight orbit
- All cavity BPMs and quads have its own mover which can move up to +/-1 mm with precision of 1 um for horizontal and vertical directions

Before Lattice Matching in Undulator

After Lattice Matching in Undulator

Undulator Offset Tuning

- Finding of an undulator mid-plane by vertical offset scan
- To use the optimum field region in an undulator

Undulator Gap Tuning

AFAD-2021 18 Sep. 2021

T. Tanaka et al., Phys. Rev. ST Accel. Beam 15, 110701 (2012)

Undulator Tapering Tuning

Phase Shifter

Phase shifter delays the path of electron beams compared to FEL radiation.

Scanning the phase shifter is a control option for phase delays of electron beams.

$$PI_{\rm PS} = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z''} B_{\rm y}(z') dz' \right)^2 dz''$$
$$s = \frac{1}{2\gamma^2} \left(L_{\rm int} + \left(\frac{e}{mc}\right)^2 \cdot PI_{\rm PS} \right) = n\lambda_{\rm r}$$

 PI_{PS} : the phase integral

s : the delayed distance

Phase Shifter Gap Tuning

- PS gap scanning with the FEL power measurement
- To find optimum PS gap in the tapering condition

Phase Shifter Scan

AFAD-2021 18 Sep. 2021

C. H. Shim et al., Phys. Rev. ST Accel. Beam 23, 090702 (2020)

FEL Optimization using Phase Shifters

Pulse Energy Statistics

Long-term (10 hour)

- FEL beam pulse duration
- $M_L (\approx {}^{24.7}/_{0.22})$
- Fluctuations after saturation

Photon and electron energy jitter

AFAD-2021 18 Sep. 2021

24.7±0.7 fs (FWHM)

112

3.2%

Self-Seeding Project History

- Collaboration with APS/USA, LCLS and TISNCM/Russia
 - Design of Diamond crystal monochromator by APS
 - Diamond crystals fabricated by TISNCM, Russia are checked at APS for its property
 - Engineering design by PAL staff and fabrication by Korean company
 - Feb. 2018: Installation of HXSS
- Commissioning of PAL-XEL HXSS
 - Oct. 2018: Nominal bunch charge 180 pC for 7,8. keV, crystal offset calibration with crossing points of self-seeding (Collaboration with LCLS)
 - <u>Nov. 2018</u>: Seeding for 3.5 keV with 30 um crystal and 14.4 keV (Collaboration with LCLS)
 - <u>Aug. 2019</u>: Seeding performance improved with laser heater
 - Oct. 2019: Optimized peak brightness and bandwidth for seeding at 9.7 keV, 14.4 keV

Hard X-ray Self-seeding

• Schematic of hard x-ray self-seeding with a diamond crystal

Previous Results (Nov. 2018)

C. K. Min et. el., J. Synchrotron Rad. 26, 1101 (2019)

Laser Heater

Results for Self-Seeded FEL at 9.7 keV

- Photon Energy Ec = 9.7 keV
- Averaged FEL energy: ~850 μJ (~1.5 mJ for single shot)
- SASE bandwidth (FWHM) = 27 eV
- Measured bandwidth = 0.35 eV (Resolution = 0.26 eV)
- De-convoluted bandwidth (FWHM) = 0.22 eV
- FEL Pulse duration = ~ 20 fs
- Chicane time delay = 30 fs
- Bragg orientation = [115]

AFAD-2021 18

- Diamond thickness = $100 \ \mu m \ (c100)$
- Portion of SASE in seeded FEL: ~6 %
- Fraction of energy enclosed within \pm 1 eV : ~ 80%

Peak brightness (photons/s/ mm² /mrad²/0.1% BW): 5 x 10³⁵

Peak Brightness and Spectral Flux

 For self-seeded FEL, almost one order of magnitude of the peak brightness and spectral flux is enhanced compared to that of the SASE mode

I. Nam et al., Nature Photonics (2021)

Two-Color FEL Generation

- Two-color FEL generation was tried in PAL-XFEL for the first time in 2020.
- 8 and 12 undulators were used before and after the self-seeding section.
- 9.67 and 9.89 keV FEL pulses were obtained successfully.

Undulator Gap Setting for Two-Color FEL Generation AFAD-2021 18 Sep. 2021

Photon Energy Measurement Result of Two-Color FEL

Energy Doubler (SLED) Tuning for 10, 30, 60 Hz Operation

Cooling water temperature control of energy doubler

(SLED)

• SLED can be simply tuned from 10 Hz to 60Hz by water temperature control after one time mechanical tuning.

 1. 60Hz: SLED temperature 0°C
 (27.75 °C)

 2. 30Hz: SLED temperature 0.4 °C ↑
 (30.15 °C)

 3. 10Hz: SLED temperature 0.55 °C ↑
 (30.30 °C)

3D Design of Energy Doubler

Simultaneous Operation of HX and SX

- We have completed modifying SX branch line during Feb. 2020.
- The optics of the new kicker-SX branch line was confirmed by using a DC kicker magnet power supply.
- The pulsed switching FEL operation at a low repetition rate (2 Hz) with an AC kicker power supply was succeeded on August 2020.
- The preparation of the HX-SX sharing mode operation by using a 60 Hz pulsed kicker is ongoing.

Magnets for HX-SX Parallel Operation (Continued)

Magnets ready for field measurements

Magnet measurements with Hall probe

User Beamtime Operation Status

2020 Beamtime summary

- > User beamtimes between Mar 25 through May 12 were moved to Jun 28 through Aug 30.
- Maintenance schedules in summer shut-down were minimized.
- > 170 days of user beamtime was maintained.
- Remote experimental supports (so called "mail-in service") were provided for foreign users.

2021 Beamtime operation

- From 2021, remote experimental support (so called "mail-in service") is no longer available.
- > At least two users are mandated to participate for sample handling and conducting experiments.
- > User beamtime will resume in March after one month of regular maintenance period.

