AFAD-2021, March 16-18, 2021 On-line meeting organized by Bulker Institute of Nuclear Physics, Novosibirsk, Russia

High-brightness Radiation Enabled by Dielectric Laser Accelerator

Yen-Chieh Huang

HOPE Laboratory, Institute of Photonics Technologies/Department of Electrical Engineering, National Tsing Hua University, Hsinchu 20013, Taiwan

OUTLINE

- 1. Dielectric laser accelerator (DLA)
- 2. Short-bunch radiation
- 3. Brilliance of DLA-driven coherent undulator radiation
- 4. Conclusions

Accelerator on a Chip (ACHIP)

https://achip.stanford.edu/

- Direct-field acceleration
- High laser damage resistance on dielectric

Partner Institutions

Envisaged DLA-driven Coherent Undulator Radiation

Dielectric laser accelerator (DLA)

Dielectric undulator

electron bunch length $\sim 1 \text{ nm}$ Bunch Charge = $\sim 1 \text{ fC}$ Gamma = $\sim 500 \text{ MeV}$ T. Plettner, R. L. Byer, Phys. Rev. ST Accel. Beams **11**, 030704 (2008).

← 100 cm

 $\lambda_{\rm u} = 1 \, {\rm mm} \, ({\rm N}_{\rm u} = 1000)$

B_{peak} = 3 T (subject to laser damage)

 $a_u = \sim 0.22$ (undulator parameter) *good scheme to keep a_u for small λ_u

Pulse structures from DLA vs. RF Accelerator

Short-bunch enhanced radiation - superradiance

Total radiation Spectral Energy in one driver laser pulse $W_N = N_I [N_\mu + N_\mu (N_\mu - 1)b^2(\omega)]W_1$ $W_{1,N}$ radiation spectral energy of 1 & N electrons $b(\omega)$: bunching factor, Fourier transform of the micro-bunch profile N_{μ} : # of electrons in a DLA micro-bunch N_{l} : # of micro-bunches in a driver-laser pulse $N_L \times N_\mu$: total number of electrons in a driver laser pulse For Gaussian bunch $f(t) = \frac{\exp(-t^2/2\tau_b^2)}{\sqrt{2\pi\tau_b}}$ $b^2(\omega)$ 0.8 $\sim 1/\tau_{h}$ $\Rightarrow b(\omega) = \exp\left(-\frac{\omega^2 \tau_b^2}{2}\right)$ 0.4

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 $\omega \tau_{h}$

1.8

Brilliance of undulator radiation

photons/s/mm²/mrad²/0.1%BW

$$B(\omega) \propto [(N_{\mu} - 1)|b(\omega)|^2 + 1]) \times N_{\mu}I(A) \times [JJ]$$

Short-bunch enhancement

where
$$[JJ] \equiv 4M \times [J_0(M) - J_1(M)]^2 \sim 1$$
 with $M \equiv a_u^2 / 2(1 + a_u^2)$

 N_{μ} : # of μ -bunch electrons N_{ν} : # of undulator period I: current ∞ bunch rate

Given a design wavelength, it is desirable to have a large N_{μ} , N_{μ} , and I (high bunch rate).

a

System parameters for calculating peak and average brilliances of coherent undulator radiation (CUR) driven by DLA

System parameters		DLA CUR	remark
Bunch Charge	fC	0.5	~3000 electrons/bunch
bunch Rep Rate	MHz	100	30 optical cycles in a 100-fs pulse repeating at 3 MHz or 100 cycles in a 300 fs pulse repetition at 1 MHz
Max photon Energy	keV	1.5	For a shorter wavelength, CUR is not effective.
Undulator Length	m	1	1000 undulator periods with a 1-mm period (0.1% bandwidth)
rms Electron Bunch Length	as	1	Wavelength divided by 3500 times scaled from the demonstrated 100 fs bunch length for an RF-accelerator driven SASE FEL
Electron Energy	MeV	~500 MeV	~1-nm radiation wavelength
Undulator parameter	NA	0.217	Laser undulator field (3.3 T, peak) at laser damage of dielectric

Peak brilliance higher or comparable to 3rd-generation light source (due to superradiance)

*Curves other than DLA CUR are adapted from Zirong Huang, SLAC-PUB-15449.

*Curves other than DLA CUR are adapted from Zirong Huang, SLAC-PUB-15449.

~GW circulating power

average brilliance/Watt 10 17 DLA CUR **DLA stands high when** 10¹⁶ normalized to beam power ² /0.1%BW/Watt) 10 15 **Diffraction-limited 2-9 GeV rings** 10 14 Upgraded 6-7 GeV rings

~GW circulating power (Taiwan photon source)

~25W power

CONCLUSIONS

I. Dielectric laser accelerator (DLA) is potentially compact, stable, and high-gradient.

- 2. Nano-bunches from DLA permit high-brightness superradiance in the soft x-ray with small γ . DLA-driven CUR is predicted to have a peak brilliance comparable to a synchrotron.
- 3. DLA-driven coherent undulator radiation has a much higher brilliance/watt than a synchrotron.