TOKYO TIER2 STATUS

TOMOE KISHIMOTO, ICEPP

T.KISHIMOTO (ICEPP)

INTERNATIONAL CENTER FOR ELEMENTARY PARTICLE PHYSICS

> Main projects at ICEPP:

ATLAS experiment at LHC

MEG experiment at PSI $(\mu \rightarrow e\gamma rare decay)$

ILC projects

- > ATLAS Japan group
 - > 17 institutes and ~150 members including students
 - > Contributes to wide area of the experiment (e.g. muon triggers, silicon trackers, Tier2 operation)

ICEPP REGIONAL ANALYSIS CENTER

- > Hardware devices are leased and replaced every 3 years
 - > Uniform architecture allows us to reduce operation cost
 - > System is kept as powerful as possible to satisfy requirements of the experiment
 - > 5th system is in operation since 2019:
 - > ~ 10k CPU cores (3 GB memory per core) and 15 PB disk storage
 - > 40 Gbps to NREN (SINET5)
- Operated by ICEPP staffs (~ 3 FTEs) + SEs from company (2 FTEs)
- > Only ATLAS VO is supported
 - > No other WLCG sites in ATLAS Japan group
- Grid middleware: ARC-CE + HTCondor and DPM
 - > One of the biggest DPM sites in WLCG

~ 300 m²

STATUS IN ATLAS

- > CPUs are fully utilized by variety of job types (e.g. MC simulation, user analysis)
 - Contributes ~5% of all ATLAS Tier2s (wall clock time) (ATLAS Japan members / ATLAS all members ~ 5%)
- Site availability in last 6 months was > 98%
 - > There was a planned power outage for building maintenance

SELECTED RECENT ACTIVITIES

- > Utilization of HPC resources
 - > Related talk: CHEP 2019 link
- > Data center operation using Machine leaning
 - > Related talk: CHEP 2019 link

UTILIZATION OF HPC RESOURCES

- High Luminosity LHC (HL-LHC) is planned to start in 2026
 - Peak luminosity x5
 - > Current computing model cannot provide enough resources with flat budget
 - \rightarrow Integrating HPC resources should help cover the growing computing demands
- > We are testing to integrate **Oakbridge-CX** system to ICEPP system
 - > Operated by Information technology center of U-Tokyo
 - No root privilege, no external network connectivity from/to computing nodes
 - > CPU: Intel Xeon Platinum 8280
 - Shared file system (Lustre)
 - > FUJITSU Software Technical Computing Suite (TCS) for job management

ICEPP

SYSTEM OVERVIEW

TECHNICAL WORKAROUND

- > Input and output data transfers
 - > ARC supports data transfers to/from shared file system with cache ©
- Software deployment
 - CVMFS cache data are pre-downloaded to shared file system by cvmfs_preload command
 - Only software, which are assumed to be necessary to run simulation jobs, are selected
 - > ~ 4TB data, need to update regularly
 - parrot_run in cctools allows us to run cvmfs client as user privilege
- Development of ARC plugins
 - > ARC does not support TCS job scheduler natively
 - > Developed plugin scripts to prepare job configuration file, submit jobs to TCS, monitor job status, and so on

COMPLETED JOBS BY HPC

- > Only event generation and simulation jobs are processed because they are CPU intensive
- > ~27k jobs have been processed so far, which is 1-2% of completed jobs by on-premise resources
- > No dedicated resources for ATLAS:
 - > Jobs are rarely processed based on fair-share when Oakbridge-CX is congested..
- > Plan to migrate from "cvmfs_preload + parrot" to "singularity" for simplicity and performance

ARM PROCESSOR

- > Fugaku is the leading HPC in TOP500 and Green500
- We have procured PTIMEHPC FX700 to evaluate performances and power consumption
 - > A64FX x2 (96 cores)
 - Need to compile ATLAS software by FUJITSU software compiler to maximize performance
- Studies are ongoing…

Test system

FX700

DATA CENTER OPERATION USING ML

- > Machine learnings have been proven to be successful in many applications
 - > It is also promising for data center operation
- Motivation:
 - > "text logs" produced by services provide useful information for understanding the status of service
 - > However, it is time-consuming tasks for site administrators to monitor and analyse such logs everyday
 - \rightarrow Developing a support framework to detect anomaly logs automatically
- > Why ML?
 - > Log analysis using scripts do not scale for complex logs and difficult to set criteria for all suspicious logs
 - > "Unsupervised" ML is used because it is difficult to collect a large amount of anomaly logs
 - > Idea of anomaly detection: **preprocessing** \rightarrow word embedding \rightarrow clustering
 - > Real DPM logs at Tokyo Tier2 site are used to evaluate ML performance

PREPROCESSING

- Service logs are aggregated using "logwatch" everyday
 - > Need to make dedicated scripts for each service
 - > For DPM, logwatch outputs "Error counts : Error message" format as follows

Error counts	Error message
336780 time(s)	globus-gridftp-server: dmlite DmStatus: Info: [#00.000002] DPM_LFN not found
333902 time(s)	xrootd : dmlite DmStatus : Info: [#00.000002] replica DPM_LFN not found
333900 time(s)	globus-gridftp-server : dmlite DmException : DmException():[#00.000002] Error when issuing request to ' <u>http://lcg-</u> <u>se01.icepp.jp:1094/domehead/command/dome_getstatinfo</u> '. Status 404. DavixError: 'HTTP NUMBER : File not found '. Response (NUMBER bytes): 'File not found on rfn: DPM_LFN err: NUMBER what: '[#00.000002] replica DPM_LFN not found'

- > Meaningless words are replaced with common words
 - > e.g 0xabcdef (memory address) → NUMBER

WORD EMBEDDING

- > Texts are converted to feature vectors using word embedding technique
 - > Doc2vec algorithm (<u>link</u>) is used in this study
 - > Use a neural network that predict a target word from context
 - > You OO goodby and I say hello \rightarrow what is OO ?

- Weights (W) represents word vectors
- For paragraph, additional matrix is defined for paragraph-id, which represents paragraph vectors

CLUSTERING

- Clustering n-dimensional feature vectors
 - > IsolationForest algorithm (link) is used
 - > Decision trees are defined with random feature and value
 - \rightarrow Anomaly data tend to result in small number of partitions

- > 1 partition for data1
- > 3 partitions for data2
- \rightarrow data1 is likely to be anomaly

> No need to define the number of clusters as a hyper parameter

SIMPLE TEST USING DUMMY DATA

> Simple dummy data (sshd log) are defined to check the idea

Label	Text logs	# of samples
Normal	Users logging in through sshd: root: 2001:2f8:102d:589:2:1:2:1 : 288 times	7
Anomaly1	Users logging in through sshd: root: 2001:2f8:102d:589:2:1:2:1 : 300 times	1
Anomaly2	Users logging in through sshd: root: 2001:2f8:102d:589:2:1:2:1 : 1000 times	1
Anomaly3	Users logging in through sshd: root: 2001:2f8:102d:589:2:1:2:1 : 288 times 2001:2f8:102d:589:2:1:2:2 : 10 times	1

- Converted to two-dimensional vectors
- Anomaly logs are detected as outliers as expected using clustering algorithm

DPM LOGS

Use DPM logs from May 29th 2019 to Aug 31th 2019 at Tokyo Tier2

> Logs are aggregated everyday using logwatch \rightarrow 1 day = 1 sample

Date	# of samples	
May 29 – Aug 7	71	Tuning data
Aug8 – Aug 31	23	Validation data

- > Hyper parameters of doc2vec and IsolationForest are tuned using tuning data
 - > There were 7 days operational issues in this tuning data period \rightarrow labeled as anomaly
 - E.g. configuration of quota was wrong, then data transfers failed

Suspicious DPM log

dmlite DmException : DmException(..):[#00.000028] Error when issuing request to 'http://lcgse01.icepp.jp:1094/domehead/command/dome_put'. Status 507. DavixError: 'HTTP NUMBER : Insufficient Storage '. Response (NUMBER bytes): 'Unable to complete put for DPM_LFN - quotatoken 'ATLASGROUPDISK' has insufficient free space. minfreespace_bytes: NUMBER

RESULTS USING DPM LOGS

> Tuning data:

Accuracy of anomaly detection	Accuracy of normal detection
6 / 7 = 0.86	62 / 64 = 0.97

\rightarrow reasonable accuracies are achieved for pre-labeled anomalies

- Validation data:
 - > 4 days (Aug 24, 27, 28, 29) are detected as anomaly
 - > DPM was upgraded on Aug 27, DPM showed new type of logs after upgrade
 - ightarrow Aug 27, 28, 29 are detected as anomaly as expected \odot
 - > Cannot understand clear reason for Aug 24 (false alert)
- > Discussion
 - > Unsupervised ML is used, but data labeling is still required to evaluate performance
 - > ML model is tuned for specific service and condition, challenging to build general model

SUMMARY

- > ICEPP regional analysis center is in operation stable
 - Contributes to ~5% of ATLAS all Tier2 sites
- Several R&Ds are ongoing
 - > Oakbridge-CX is integrated to ICEPP to process ATLAS production jobs
 - > ML is promising approach to automate data center operation