

Circular Electron-Positron Collider Status and Progress

XinChou Lou Institute of High Energy Physics, Beijing

Outline

Reminder & introduction

- CEPC accelerator design improvement
- CEPC accelerator R&D highlights
- Detector, software and simulation study
- Site investigation
- > Summary

Beijing Electron Positron Collider (BEPC)

beam energy: 1.0 - 2.3 GeV

2004: started BEPCII upgrade, BESIII construction 2009 - now: BESIII physics run

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

• 2009-now (BEPCII):

 L_{peak} = 1.0 x10³³/cm²(4/5/2016)

LINAC

present collider for particle physics in China upgrade in lumi. & energy under discussion

Xiaoyan Shen IHEP

τ-charm Physics

BESIII

detector

Physics at τ - charm Energy Region

- Rich of resonances: charmonia, charmed mesons, charmed baryons
- Threshold characteristics (pairs of τ, D, D_s, ...) -- low BG at threshold, high X-section -- indirect probe of NP
 BESIII physics whitepaper
- Transition between pQCD and non-pQCD
- Energy location of the new forms of hadrons

Xiaoyan Shen IHEP

March 16, 2021

BESIII physics whitepaper Program may extend to ~2029

What's next?

China is considering the next accelerator beyond the BEPCIII

Reminder about the CEPC-SppC

BEPCII \rightarrow **BEPCIII**, will likely complete its mission ~2029; **CEPC** – **possible** accelerator based particle physics program in China after BIII

Reminder about the CEPC-SppC

BEPCII \rightarrow **BEPCIII**, will likely complete its mission ~2029; **CEPC** – **possible** accelerator based particle physics program in China after BIII

CEPC Roadmap and Schedule (proposed)

CEPC Project Timeline

	2015	505	205 205	⁵⁰³⁰	2035 2035		5040	50°
	Pre-Studies	Key Tech. R&D Engineering Design	Pre- Construction	Construction		Data Taking		SPPC
CEPC-SPPC Concept	• 2013.9 P • 2015.3 R	 2016.6 R&D funde 2018.5 1st Worksh 2018.11 Release of Project kick-off meeting celease of Pre-CDR 2018.2 1st 10 15 	 Site selection technology & Accelerator internationa d by MOST op outside of China f CDR g T SC dipole magnet 	n, engineering design, & system verification TDR, MoU, I collaboration	 Tunnel a Accelera Installati commiss Decision detector installati 20 T SC dipole Nb₃Sn+HTS or H 	Higgs nd infrastructure tor components on, alignment, ca sioning on detectors and TDRs; Construct on and commissi e magnet R&D w ITS	Z W e construction production; alibration and d release of ion, ioning	(pp/ep/eA)
			HTS Mag	gnet R&D Program			-	I

CEPC CDR – Accelerator (2018)

Baseline: 100 km, 30 MW; Upgradable to 50 MW, High Lumi Z, ttbar; Compatible to pp collider

CDR - Detector-Physics (2018)

- Official international collaborations are to be formed, and to decide the detector design.
- The working group is doing R&D of all subsystems in the CDR design, and exploring various other technologies.
- The final two detectors likely are mixtures of different options.

http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf 9

Beyond CDR design enhancement, R&D, detector-simulation, and infrastructure

CEPC accelerator design improvement

High luminosities at Z and H

- Optimization of parameters, improving the dynamic aperture(DA) to include errors and more effects, ...
- New lattice for high luminosity at Higgs
- New RF section layout
- More detailed study of MDI
- Optimization of the booster design and its magnets
- A new alternative design of the LINAC injector
- A new plasma injector design
- Injection design
- •

Accelerator Review Committee – recommended by the IAC, established and met in November, 2019

CEPC accelerator design improvement

CDR scheme (Higgs)	 L*=2.2m, θc=33mrad, βx*=0.36m, βy*=1.5mm, Emittance=1.2nm Strength requirements of anti-solenoids (peak field B_z~7.2T) Two-in-one type SC quadrupole coils (Peak field 3.8T & 136T/m)
High luminosity scheme (Higgs)	 ✓ L*=1.9m, θc=33mrad, βx*=0.33m, βy*=1.0mm, Emittance=0.68nm – Strength requirements of anti-solenoids (peak field B_z~7.2T) – Two-in-one type SC quadrupole coils (Peak field 3.8T & 141T/m) with room temperature vacuum chamber & Iron yoke

CEPC Higgs High Lumi Lattice and Dynamic Aperture Status

- Fit parameter list with luminosity of 5 $\times 10^{34}$ /cm²/s
 - Stronger optimization and stricter hardware requirement should be made to get enough dynamic aperture
- Optimization of the quadrupole radiation effect
 - Interaction region: longer QD0/QF1 (2m/1.48m => 3m/2m)
 - ARC region: longer quadrupoles (2m => 3m)
- Reduction of dynamic aperture requirement from injection
 - Straight section region: larger βx at injection point (600m => 1800m)
- Maximization of bend filling factor to minimize the synchrotron radiation loss per turn
 - ARC region: sextupoles in two rings changed from staggered to parallel; The left drifts are used for longer bend.
 - RF region: shorter phase tuning sections

With better correction of energy dependent aberration and shorter L* (without changing the front-end position of the final doublet cryo-module)

Goal (w/ error): $8\sigma_x \times 15\sigma_y \times 1.7\%$

CEPC High Luminosity Parameters beyond CDR

	tt	Higgs	W	Z	
Number of IPs	2	2	2	2	
Energy (GeV)	180	120	80	45.5	
Circumference (km)	100	100	100	100	
SR loss/turn (GeV)	8.53	1.73	0.33	0.036	
Half crossing angle (mrad)	16.5	16.5	16.5	16.5	
Piwinski angle	1.16	4.87	9.12	24.9	
N_e /bunch (10 ¹⁰)	20.1	16.3	11.6	15.2	
Bunch number (bunch spacing)	37 (4.45µs)	214 (0.7us)	1588 (0.2µs)	3816 (86ns)	11498 (26ns)
Beam current (mA)	3.5	16.8	88.5	278.8	839.9
SR power /beam (MW)	30	30	30	10	30
Bending radius (km)	10.7	10.7	10.7	10.7	
Phase advance of arc cell	90°/90°	90°/90°	90°/90°	60°/60°	
Momentum compaction (10 ⁻⁵)	0.73	0.73	0.73	1.48	
$\beta_{IP} x/y (m)$	1.0/0.0027	0.33/0.001	0.33/0.001	0.15/0.001	
Emittance x/y (nm)	1.45/0.0047	0.68/0.0014	0.28/0.00084	0.27/0.00135	
Transverse σ_{IP} (um)	37.9/0.11	15.0/0.037	9.6/0.029	6.36/0.037	
$\xi_x/\xi_y/\mathrm{IP}$	0.076/0.106	0.018/0.115	0.014/0.13	0.0046/0.131	
$V_{RF}(\text{GV})$	9.52	2.27	0.47	0.1	
f_{RF} (MHz) (harmonic)	650 (216816)	650 (216816)	650 (216816)	650 (216816)	
Nature bunch length σ_z (mm)	2.23	2.25	2.4	2.75	
Bunch length σ_z (mm)	2.66	4.42	5.3	9.6	
HOM power/cavity (kw)	0.45 (5cell)	0.48 (2cell)	0.79 (2cell)	2.0 (2cell)	3.02 (1cell)
Energy spread (%)	0.17	0.19	0.11	0.12	
Energy acceptance requirement (DA) (%)	2.0	1.7	1.2	1.3	
Energy acceptance by RF (%)	2.61	2.5	1.83	1.48	
Lifetime (hour)	0.59	0.35	1.3	1.7	1.4
$L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$	0.5	(5.0)	18.7	35.0	105.5

* High luminosity Z has a lattice same as that of CDR for Higgs. but high luminosity Higgs has a new lattice

CEPC accelerator R&D highlights

CEPC Accelerator TDR, R&D Priority

test facilities are available for many of the tasks

- CEPC 650MHz 800kW klystron: high efficiency (80%), fabrication will be completed by year end, tests in 2022
- High precision booster dipole magnets: which are critical for booster operation, to complete full-size magnet model in 2021
- CEPC 650MHz SC accelerator system, including SC cavities and cryomodules, to complete test cryomodule in 2022
- Collider dual aperture dipole magnets, dual aperture quadrupoles and sextupole magntes: to complete full-size model in 2022
- > Vacuum chamber system: to complete fabrication and costing test in 2022
- SC magnets including cryostats: to complete short test model in 2022

16

CEPC Accelerator TDR, R&D Priority,

test facilities are available for many of the tasks

- MDI mechanic system: vacuum connection removal to be tested in 2022
- Collimator: to complete model test in 2022
- Linac components: to complete key components test in 2022
- Civil engineering design: to complete reference implementation design in 2022
- Plasma wakefield injector: to complete the electron accelerator test in 2022
- 18KW@4.5K cryoplant: industrial partner
- ...

SppC technology R&D

Ion based supercondcuting materials and high field magnets

17

IHEP New SC Lab under Construction (Status in Nov. 2019)

Facility: CEPC SCRF test facility (lab) is located in IHEP Huairong Area of 4500m^2

New SC Lab Design (4500m²)

SC New Lab will be available in 2021

Crygenic system hall in Jan. 16, 2020

Vacuum furnace (doping & annealing)

Nb3Sn furnace

Temperature & X-rav mapping system

Second sound cavity quench detection system

Helmholtz coil for cavity vertical test

Vertical test dewars

Horizontal test cryostat

Nb/Cu sputtering device Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

R&D: High Q SRF Cavities

The 650 MHz 2-cell and 1.3 GHz 9-cell cavities have both exceeded the CEPC spec for vertical test, a milestone towards the TDR

Medium-temperature (Mid-T) annealing adopted to reach Q= 3.4E10@26.5MV/m

N-infusion adopted to reach Q = 6.0E10@22.0MV/m

A New Recipe: Flexible Polishing

- Friction between flexible medium and the cavity surface through highspeed reciprocating motion: Roughness ~100nm
- By replacing bulk EP, 1.3 GHz 1-cell cavity can reached 46 MV/m
- Advantages: high efficiency, environmental friendly, low cost

polishing

R&D: Towards High Eff. Klystrons

- 1st prototype successfully tested
 - output power reached 400 kW CW and 800 kW pulsed (due to the limitation of the test load)
 - efficiency ~ 62%
 - band width>+-0.5Mhz.
- High efficiency klystron
 - 3D simulation results:
 - 110 kV: 77%
 - multi-beam: 80%
 - Design completed and production will start soon

Bake out

Cold test

R&D: Other Prototypes

magnets, EM-separators, vacuum pipes, ...

Detector, software and simulation study

> Detector R&D, software development

- Silicon pixel vertex detector: $\sigma(IP) \sim 5\mu m$, 2 lines of ASICs developed, plans to build a full size prototype ladder ...
- Large area silicon tracker: 70-140m², investigating HV-CMOS option, aims at a short stave demonstrator based on ATLASPix3
- TPC: prototype + a laser calibration system built, to correct for ion backflow; exploring pixel TPC with double mesh or micromegas
- IDEA drift chamber study: mechanical, wire selection, cluster counting electronics, ...
- Built PFA ECAL and HCAL prototypes, ...
- New ideas with crystal ECAL;
- •

A 4th detector concept – new design based on crystal calorimeter + silicon tracker + ionization PID + thin magnet

Detector R&D Review Committee – recommended by the IAC, a large committee (~16 members) has been established

Particle Identifications - Choices

- Charge particle ID is crucial for the flavor physics. Aiming at P < ~ 20 GeV/c.
- Both TPC & DC provide good PID, with dE/dX or dN/dX cluster counting.
- For the FST solution, a supplement PID detector is needed. Combination of different PID detectors is also viable.
- Drift chamber between the outer layers of FST. It is promising in a simple simulation. More work in design optimization, and the physics impact.
- Time of flight detectors, e.g. LGAD. The resolution ~20-30 ps today (ATLAS/CMS). Sensor by IHEP & NDL reaches 25ps. By the time of CEPC, 10 ps might be possible.
- ③ A RICH of aerogel or gaseous radiators. Space constraint needs to be studied.
- More options and studies are needed.

New Crystal Calorimeter Design

- Crystal bar perpendicular to particles. Significant reduction of number of channels.
- Energy & time matching provide a solution of ambiguity / ghost hits.

New Crystal Calorimeter Design

Also exploring a design of adding a time layer to the longitudinal solution.

- SCEPCAL: a Segmented Crystal Electromagnetic Precision Calorimeter
- Transverse and longitudinal segmentations optimized for particle identification, shower separation and performance/cost
- Exploiting SiPM readout for contained cost and power budget

Detector Solenoid Design

Challenges

Low mass, ultra-thin, high strength cable

LTS solution also possible, but can not be placed inside HCAL

4th Detector Conceptual Design

March 16, 2021

Machine-Detector Interface (MDI)

Temperature distribution under High Order Mode (HOM) heat

Final focusing magnets (QD0, QF1) with Segmented Anti-Solenoidal Magnets
Optimize the segmented of the segmented of

Central beampipe made with Beryllium and located at r = 14 mm, beampipe opened up in the forward region and made with aluminum Structure: Double thin beryllium layers with paraffin (coolant) in the middle, forward beampipe with water cooling

Work in progress with MDI

CEPC Software

The CEPC software development first started with the iLCSoft

- Reused most software modules: Marlin, LCIO, MokkaC, Gear
- Developed its own software components for simulation and reconstruction
- Massive M.C. data produced for detector and physics potential studies
- CDR was released in Nov, 2018, based on results from the iLCSoft
- A new CEPC software, CEPCSW, prototype was proposed at the Oxford workshop in April 2019
- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June 2019
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
 - Maximize the sharing of software components among different experiments
- Now CEPCSW, fully integrated with Key4hep, is being developed to facilitate further R&D activities of the experiment

Architecture of the CEPCSW

• The software layout

- External libraries
- Core software
- CEPC applications for simulation, reconstruction and analysis

Core software

- Gaudi framework: defines interfaces to all software components and controls their execution
- EDM4hep: generic event data model for HEP collider experiments
- K4FWCore :manage event objects defined by EDM4hep
- GeomSvc :a DD4hep-based geometry service to provide a unified way to access detector geometry data
- Both K4FWCore and EDM4hep are Key4hep packages

CEPC Simulation Study

White papers

- To promote the physics study at TDR & to converge to the Physics White Papers
- Physics white papers:
 - Physics handbooks for new comers: PostDoc/Student
 - Official references for the physics potential
 - Guideline for future detector design/optimization
- Higgs white paper published in 2019

Site investigation and Civil Design

- More invitations from local governments: Changsha, Changchun, ...
- Recent visit to Shangsha and Changchun: good geology & transportation(~20 km from large city & international airport)

- Site selection is based on
 geology, electricity supply,
 transportation, environment
 for foreigners, local support
 & economy,...
- North are better for running cost
- CDR study is based on Qing-Huang-Dao, which is 300 km from Beijing

- CEPC accelerator high luminosity design and TDR moving ahead.
- Guided by IAC and Review committees accelerator/detector R&D making significant progress.
- The CEPC Study Group continues with the site investigation, experimental area design, and the MDI study.
- CEPC is strengthening and broadening the cooperation with industrial partners.
- Build a stronger CEPC team w. intl. collab. & participation, participating in the HEP strategy planning process in Europe and the US.
- Position CEPC to be ready for the government to make the decision; continues to work with funding agencies.

CEPC accelerator design improvement

CEPC CDR Lattice DA with Errors

Achieved DA (with errors)@ Higgs: 10σx/21σy/0.00 (on momentum), 2σx/9σy/0.0135 (off momentum) Design DA goal (with errors)@Higgs: 8σx/15σy/0.00 (on momentum), 1σx/1σy/0.0135 (off momentum)

Component	Δx (mm)	Δy (mm)	$\Delta \theta_{z} (mrad)$	Field error
Dipole	0.10	0.10	0.1	0.01%
Arc Quadrupole	0.10	0.10	0.1	0.02%
IR Quadrupole	0.05	0.05	0.05	
Sextupole	0.10	0.10	0.1	

CDR lattice design with errors reached the DA design goal

