Activities of small-accelerator-based ultrafast-electron diffraction and freeelectron laser in KAERI

Young Uk JEONG 2021. 3. 16

WORLD CLASS INSTITU

KAER

COLLECTIVE INTELLIGENCE Radiation Center for Ultrafast Science

I. Ultrafast Electron Diffraction

S CIFGU

Ultrafast Electron Diffraction (UED)

KAERI

World-wide efforts for MeV UED

An S CIPGUIS

Instrumental temporal resolution of UEDs is still limited >100 fs.

World-wide efforts for MeV UED

An S CIFGUIS

Instrumental temporal resolution of UEDs is still limited >100 fs.

Facility Bird-eye View

시설 개관

 $E \neq mc$

Facility Appearance

시설 개관

E≠mc

Facility Overview

시설 개관

 $E \neq mc$

Coaxial-type Indium-sealed RF Photogun

Frequency Tuning Mechanics

Vacuum sealed with Indium wires

Frequency : 2.856 GHz Repetition Rate : 1-500 Hz Axial Symmetry with a Coaxial Coupler

S CIFGU

High power test

Dark current

H. W. Kim et al., J. Kor. Phys. Soc., 74, 24 (2019)

Emittance Measurement

KAERI UED: Bunch Compression

 $E \neq mc$

KAERI UED: Jitter Compression

 $E \neq mc$

Arrival time jitter due to RF amplitude & phase

 $\Delta E/E = 0.07\%$ $\Delta \Phi_{\text{Laser-RF}} = 40 \text{ fs}$

SUDTID &

KAERI

Toward the fastest Electron Camera

$$\tau_{Inst.\,res.} = \sqrt{\tau_{pump\,laser}^2 + \tau_{e-bunch}^2 + \tau_{jitter}^2 + \tau_{velocity-mismatching}^2}$$

S CIFGU

Timing Stabilization between Laser & RF

하군원

KAERI

자렬여

Korea Atomic Energy Research Institute

RF gun 600 Fiming drift of electron bunch (fs) Achromatic 400 bending 200 UV 0 THz $\alpha \simeq$ -200 Slit RF -400 ıΔt Ti:Sa Amp. Oscillator Synch. CCD -600 Laser (2856 MHz) control -2000 -1000 1000 2000 3000 0 4000 Laser injection timing drift (fs) Drift of the optical amplifier Timing drift of electron beam Drift of the RF-to-laser synch. 20 40 Timing drift (fs) ariit (IS 10 20 Timing drift (fs) Temperature -25 .5 fs (rms) -20 10.8 fs (rms) mperature -10 20.0 -50 -40 Buimi -75 9.6 Motor movement -80 After timing correction -100 -120 1000 2000 3000 4000 1000 2000 Time (s) 0 3000 4000 1000 2000 0 3000 Time (s) Time (s)

J. Shin et al., Laser Photon. Rev. 15, 200326 (2021).

 $E \neq mc$

Simulated drift suppression ratio

M S CIPGUS

Conventional Characterization of Electron Bunch

Setup of Terahertz (THz) Streak Camera

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Kim et al., Nat. Photon. 14, 245-249 (2020).

E≠mc

M S CIRCUS

THz Streak Camera with Non-resonant Slit

KAERI

S CIPGUS

THz Streak Camera with Non-resonant Slit

KAERI

Korea Atomic Energy Research Institute

M S CIFGUIS

Streaking velocity = 4.8 μrad/fs 30 μm Streaking resolution = 3.8 fs

Experimental Results on THz Streaking

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Experimental Results on THz Streaking

Bunch duration = 25 ± 8 fs (rms) @ 0.57 pC, 3.11 MeV Arrival time jitter b/w THz pulse & electron bunch = 8 fs (rms)

Dynamics of Polycrystalline Bismuth Film

 $E \neq mc$

MS CIFGUS

Electron is the most trustful probe of EM-field

The first cathode-ray oscilloscope (1897)

K. F. Braun

1 GHz at 10 mV analog oscilloscope (1979)

https://upload.wikimedia.org/wikipedia/commons/9/98/CRT_oscilloscope.png

Recorded THz waveform

- Horizontal beam size @ slit = 3.7 mm
- Single-shot time window = 12.3 ps
- ~100 electrons/pixel for single-shot image
- Electron bunch : 0.5 pC, 3.101 MeV @ 50 Hz •
- Time resolution per pixel = 13.2 fs (Sampling rate ~ 75.7 TS/s)
 - **Resolution of E-field amplitude = 200 V/m**

Signal integrity

 $E \neq mc$

M S CIRCUS

Feasibility of real-time PHz oscilloscope

For 800 nm pulse visualization,

1. Electron pulse duration should be 170 as.

2. Thickness of metal slit should be 53 nm.

An S CIFGUS

Sub-10 fs UED by using an Energy Filter

H. W. Kim et al., Structural Dynamics, 7, 034301 (2020).

Sub-10 fs UED by using an Energy Filter

Sub-10 fs UED by using an Energy Filter

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Collaboration for New Understanding

Unknown physics of metal halide perovskites

🕑 **CI**I'GUIS

- Long Charge-carrier
 Lifetime
- ✓ Benign Defects
- Role of the Organic Cation
- ✓ Ion Migration
- Ferroelectricity
- Soft Lattice & Dynamic
 Disorder

SLAC-UED vs. KAERI-UED

Perovskite Diffractions measured by SLAC-UED

SLAC-UED_Ivs. KAERI-UED

Overall 1D difference curves; $\Delta I(q,t) = I(q,t) - I(q,t_{ref})$

II. Terahertz Free Electron Laser

S CIRCI

Terahertz FEL (1995-present)

FEL Beam Characteristics

"First Lasing of the KAERI Compact Far-Infrared Free-Electron Laser Driven by a Magnetron-Based Microtron", Y.U.Jeong, et al., Nucl. Instr. and Meth. in Phys. Research A 475, 47(2001).

Diffraction-limited Beam

Focusing by a Mirror of f/#=0.26

Low Beam Energy

THz Macropulse Energy : 0.3 mJ THz Micropulse Energy : 20 nJ Max. Average Power : 3 mW (@ 10 Hz)

Fourier-transform Limited Beam

KAERI Activities on THz FEL Applications

M & CIFGUS

Wavelength : 300-600 μm

- **THz Power : 0.1-1 W**
- Target System Size : Table-top or Rack Type

Microtron-based FEL with a Short & Strong Hybrid EM Undulator - a Low-loss LIPS Waveguide & Mesh Mirrors

Laboratory-scale THz FEL

E≠mc

An S CIPGUIS

 $E \neq mc$

"Waveguide-Mode Terahertz Free Electron Lasers Driven by Magnetron-Based Microtrons", Y. U. Jeong, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, 898, 2016

KAERI

Korea

S. Bae, et al., J. Kor. Phys. Soc., under review

	Parameters	OLD FEL	NEW FEL	NEW FEL
		(FEL-1)	(FEL-2)	(FEL-3)
	Electron Kinetic Energy	6.5 MeV	5 MeV	3.5 MeV
	Electron Micropulse Duration	20 ps	20 ps	20 ps
	Electron Macropulse Duration	5 µs	5 µs	5 µs
	Electron Micropulse Current	1 A	1 A	1.2 A
	Electron Macropulse Current	40 mA	40 mA	50 mA
	Undulator Magnetic Field	4.5-6.8 kG	7-11 kG	4.5-7.0 kG
	Undulator Period	2.5 cm	2.5 cm	2.5 cm
	Number of Undulator Period	80	40	20/30
	Undulator K-parameter	1.0-1.6	1.9-2.6	1.0-1.6
	FEL Wavelength	100-200 μm	300-600 μm	300-600 μm
	Resonator Type	Parallel-plate Waveguide & Confocal Free-space Mode	Waveguide Mode	Waveguide Mode
E	Mode Cross Section Size	1.0 mm x 10.7 mm	1.5 mm x 3.4 mm	1.5 mm x 3.4 mm

Acknowledgements

UED & FEL development

Nikolay A. Vinokurov The late Sergey Miginsky The late Boris Gudkov KAERI

Hyun Woo Kim, In Hyung Baek, Mi Hye Kim, Young Chan Kim, Sunjeong Park, MoonSik Chae, Key Young Oang, Junho Shin, Sangyoon Bae, Jungho Moon, Kyu-Ha Jang, Kitae Lee

RF-laser synchronization Prof. Jungwon Kim

THz wave generation Prof. Fabian Rotermund PAL

RF gun design Dr. Jang-Hee Han

UNIVERSITÄT BERN Split ring resonator Dr. Zoltan Ollmann, Ms. Mozhgan Hayati, Prof. Thomas Feurer

RF deflector Prof. Seong Hee Park

Sample preparation Prof. Sunglae Cho

Thank you and my dear friends!!

The Late Boris Gudkov (Nov. 1947-Dec. 2019)

The Late Sergey Miginsky (May 1961-Jan. 2021)