

Study on 2K Heat Exchanger for Superfluid Helium Cryogenic Systems at KEK

Ashish Kumar, Ph.D.

Researcher

CASA, Accelerator Laboratory, KEK

- 1. Introduction
- 2. Objective of the Study
- 3. Methodology for Effectiveness Analysis
- 4. Experimental and Numerical performance of the 2K heat exchanger
- 5. Optimized 2K Heat Exchanger
- 6. Experimental Verfication of the Optimization Study
- 7. Conclusion

Introduction

Accelerators with Superconducting Technologies

- SRF cavities accelerates particle beams in facilities such as XFEL (DESY), LCLS (SLAC), STF (KEK), etc.
- Superconducting magnets bends and focus the particle beams in LHC (CERN).
- Usually operated at < 2.0 K temperature, cooled with Superfluid Helium (He II).

Nb Superconducting Cavity System

LHC Superconducting Magnet System

Cited from: New J. Phys. 20 (2018) 11301

http://www.supraconductivite.fr/en/index.php?p=applications-accelerateurs

Superfluid Helium Production Techniques

Superfluid Helium Cryogenic System at KEK

2K Heat Exchanger

- Cools liquid helium (LHe) from 4.4 K to >2.2 K.
- Uses sensible heat capacity of gaseous helium (GHe) at 2.0 K.
- Decrease vapor flash loss for LHe after Joule Thomson (JT) valve.
- Effectiveness > 84% to achieve subcooled 2.2 K LHe.

Designed by Prof. K. Hosoyama

GHe Pumping System

cERL GHe Pumping System

Objective of the Study

- > Determine the performance of 2K heat exchanger.
- Performance is determined by a factor known as *Effectiveness*.
- > Determine GHe pressure drop through 2K HX.
- Optimize the design to maximize He II production rate from the cryogenic systems.

2K HX_1

Importance of Effectiveness and GHe Pressure drop

Methodology for Effectiveness Analysis

Computational Fluid Dynamics

Experimental and Numerical Performance of the 2K HX_1

2K Heat Exchanger Test Stand

Schematic Diagram of Heat Exchanger Test Stand

Experimental Results

Effectiveness of the 2K HX 1

Performance Parameters —	2K H	X_1
	Experiment	Numerical
Effectiveness @ 3 g/s	75%	73%
GHe ΔP @ 3 g/s	135 Pa	118 Pa
LHe outlet temperature @ 3g/s	2.5 K	2.57 K
Wetness after JT Valve	87.5%	86.8%

- Effectiveness always reduces with increasing flow rate.
- \succ GHe pressure drop is directly proportional to square of mass flow rate (\dot{m}^2) .

Parametric Study of the 2K HX_1

Objective and Methodology

- Improve the performance of the 2K HX_1.
- > Set of parameters studied to improve the design.
- > Overall size of the 2K HX is kept similar, initially.
- Helix diameter and fin design cannot be changed.
- Simulations performed at 3 g/s flow rate.

Optimization Methodology

Cooling Capacity of STF and cERL Cryogenic Systems

 $\frac{\text{Required Pumping Capacity}}{\dot{m} = \dot{m}_{\text{He II}} + \xi \times \dot{m}}$

$$\frac{\text{Flash Loss (from Effectiveness)}}{\xi = \frac{\dot{m}_v}{\dot{m}} = \frac{\left[h_{h,o} - h_{h@ \text{ sat.}}\right]}{h_{fg}}}$$

<u>He II Production Rate</u> HPR = $\dot{m}_{He II}$ ×Latent Heat @ 2.0 K

Summarized Results

Performance Parameters	2K HX_1 (in	n 2K HX_1	2K HX_2 (with	2K HX_3	
	STF and cER	L)	axial restriction)	(w/o axial restriction)	
Helical tube parameters					
Tube OD (thickness)	Φ 6 (1) mm	Φ 6 (1) mm	Φ 6 (1) mm	Φ 6 (1) mm	
Helix diameter (pitch)	75 (9) mm	Φ 75 (9) mm	Φ 75 (8) mm	Φ 75 (8) mm	
Number of loops	60	30	34		
Helix angle	Unknown	13°	26°	DESIGN	
2K HX axial length	554 mm	277 mm	279 mm	520 mm	
2K HX diameter	Φ 82 mm	Φ 82 mm	Φ 82 mm	Φ 82 mm	
Bypass Area	Nil	Nil	4.7%	4.7%	
Performance Parameters					
Effectiveness @ 3 g/s	84%	75%	78.4%	84%	
GHe ΔP @ 3 g/s	600 Pa	135 Pa	97 Pa	140 Pa	
LHe outlet temperature @ 3g/s	2.2 K	2.5 K	2.36 K	2.2 K	
Cooling capacity_STF	70.14/	70 E \\/	01 2 \\/	02 1 \\/	
@ limiting point	70 VV	70.5 VV	01.5 VV	02.1 VV	
Cooling capacity_cERL	00.14/	00 \\\/		02.14/	
@ limiting point	80 VV	88 VV	91.2 VV	92 VV	

Experimental Verification of Optimization Study

Experimental Results

Comparison of 2K HX_2 with 2K HX_1

Performance comparison of 2K HX_2 with its numerical results

Conclusions

Conclusion

- Cryogenic plants (Sulzer TCF200) produces 250 Ltr/hr (180 W) of He I.
- > Pumping systems capacity at 2.0 K is limited (max. 110 W).
- ➢ He II production is hindered by the <u>GHe pressure drop</u> through the 2K HX.
- GHe pressure drop was reduced by almost 4 times to improve the He II production rate.
- Two 2K HX_1 in series at STF and cERL facility provides 70 W and 80 W of cooling capacity respectively at 2.0 K and Optimized 2K HX_3 should increase the cooling capacity of cryogenic systems by 15% to 82.1 and 92 W, respectively.
- Cost saving with purchasing extra pumps to improve the He II production rate.

Thank you for your attention!