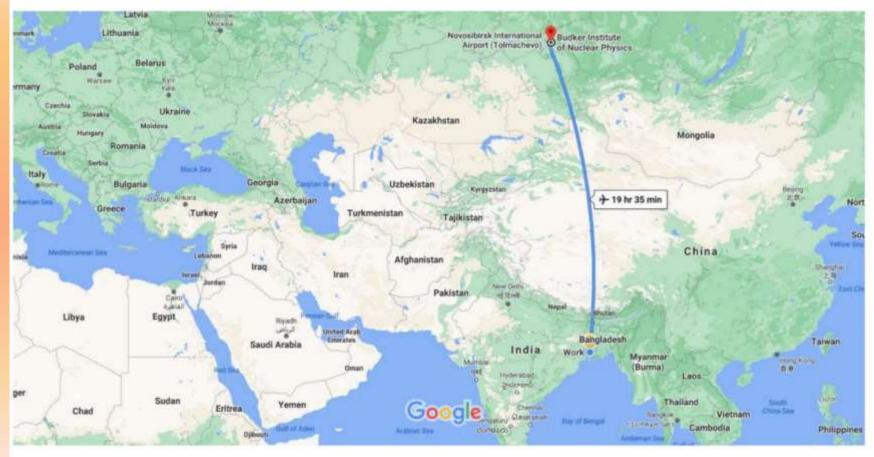


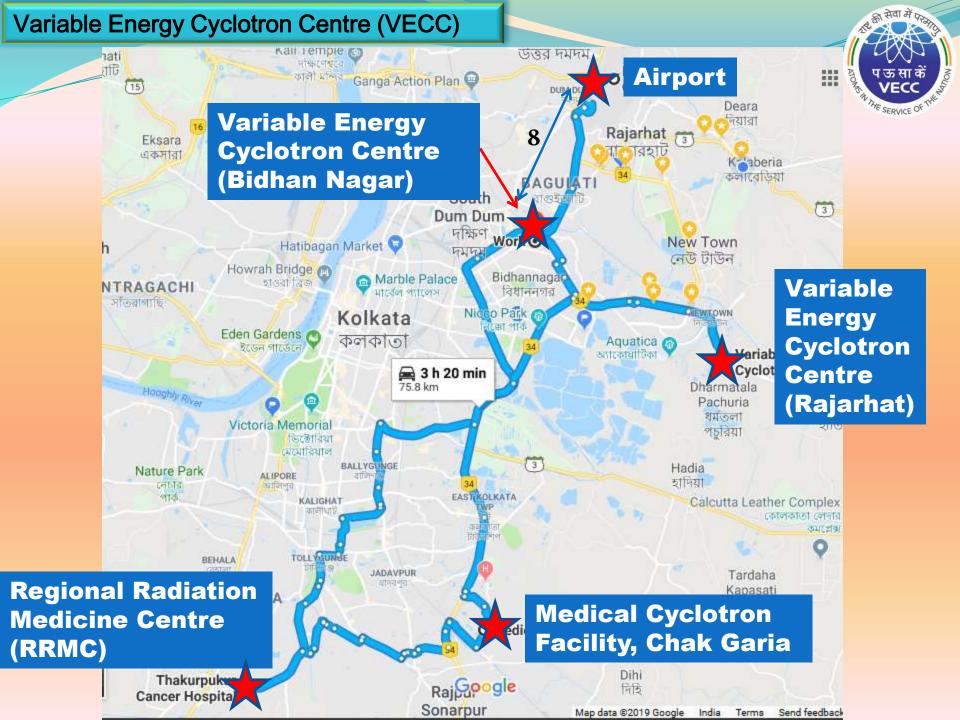
Accelerator development activity at Variable Energy Cyclotron Centre, Kolkata, India

Arup Bandyopadhyay

(arup@vecc.gov.in)


Asian Forum for Accelerators & Detectors (AFAD-2021)

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia



Google Maps Variable Energy Cyclotron Centre to Budker Institute of Nuclear Physics

K=130 Room Temperature Cyclotron

K=500 Super-conducting Cyclotron

30 MeV Medical Cyclotron

ISOL post-accelerator type RIB facility

Variable Energy Cyclotron Centre (Bidhan Nagar) Room Temperature Cyclotron (K=130) – June 1977

PIG / ECR

Alpha : 28-50 MeV Proton : 7-12.5

ECR

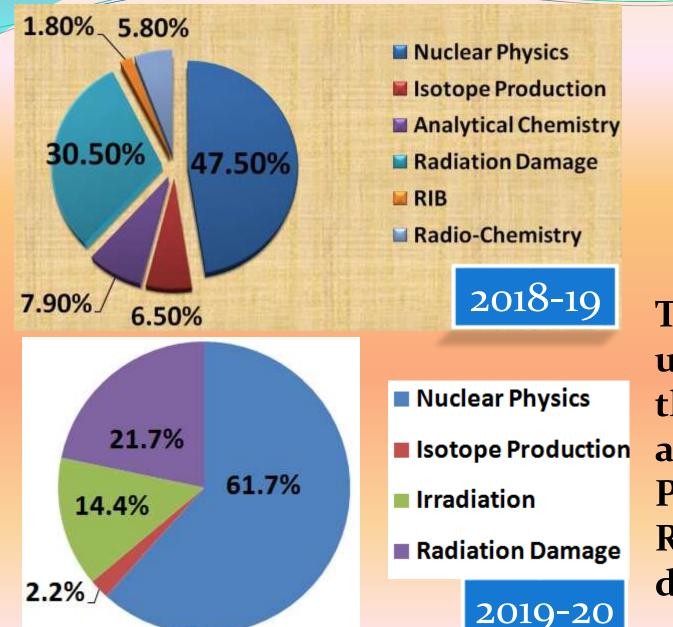

Nitrogen : 105-140 MeV Oxygen : 116-160 MeV Neon : 145 -192 MeV

Beam Availability : All systems are working, all tunings are completed, beam is either on target or on FC-01 on user's request.

24x365=8760 → **100%**

2019-20

"Cyclotron availability time" 5994 h (68.2%)


"System startup & beam tuning" time 2014.5 h (23%)

"Beam on target" time of 3980 h (45.4%)

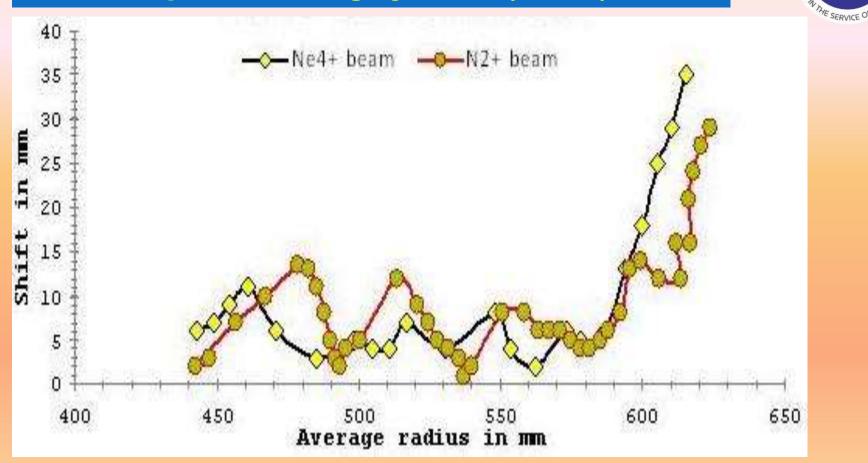
<Beam availability>=4286h = 48.9%

Utilisation of cyclotron in last two years

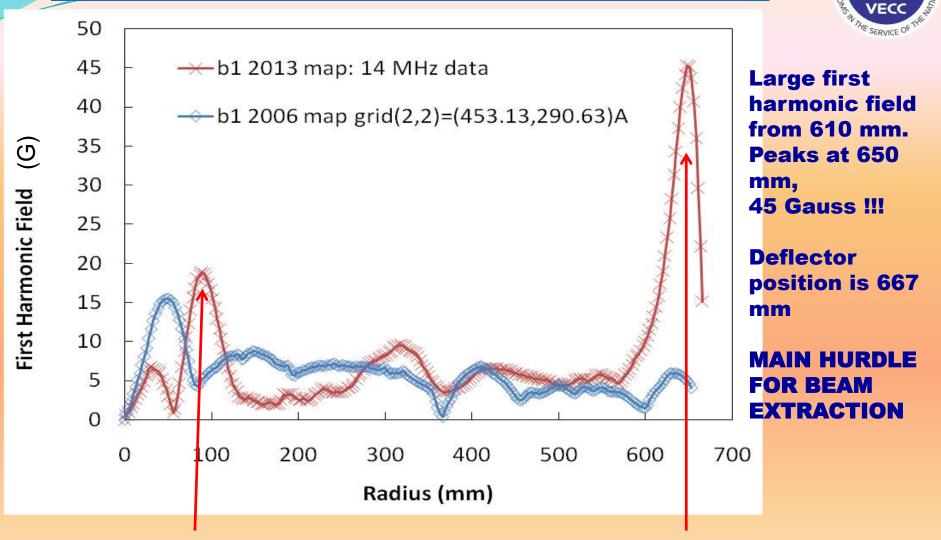
The major utilization of the cyclotron are for Nuclear Physics & Radiation damage studies

Max. Energy : 80 MeV/u for light ions 5-10 MeV for heavier ions

Max. mag field : 5 Tesla Pole gap (Hill) : 64 mm Magnet Diameter : 3.05 m Total Magnet height : 2.18 m Weight : 80 Ton


Main coils : Two – NbTi Trim coils : Thirteen - Cu

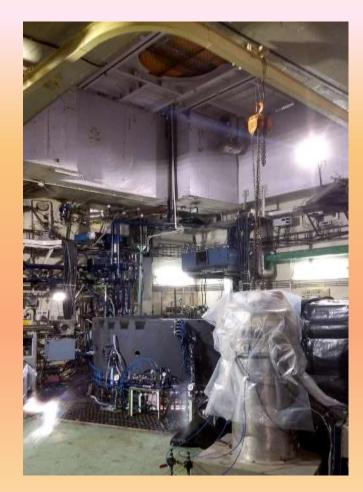
RF : Freq – 9 to 27 MHz Three cavities Max Dee voltage 80 kV


Variable Energy Cyclotron Centre (Bidhan Nagar)

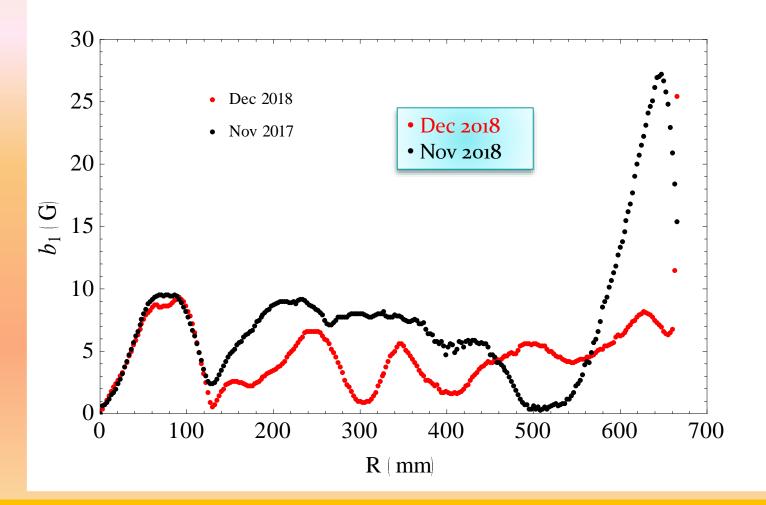
Super-conducting Cyclotron (K=500)

क्ता सेवा में त

Beam gets off-centered after 600 mm radius Deflector position at 667 mm



Error in central plugs, small and large hill additions


Mismatch between magnet centre and cryostat centre

The cyclotron was almost completely disassembled to rectify the problems and assembled again

Results of magnetic field measurement with new Central plug (Black dots) & Cryostat shift (Red dots)

Fírst beam extraction from SCC on 29th Dec 2019

Beam spot viewed at the alumina mounted at the target position Diameter: ~ 5 mm Elastic scattering of beam was measured from ¹⁹⁷Au, ²⁷Al, ¹²C targets

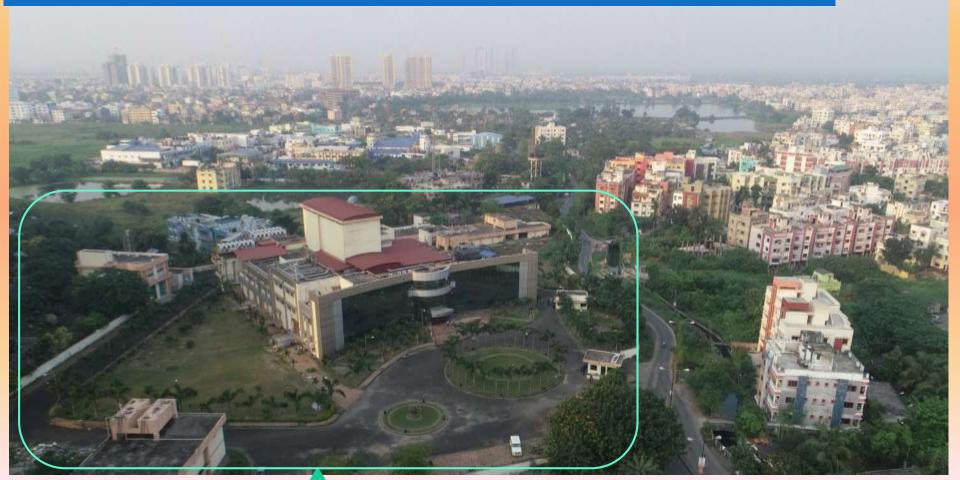
• Different fragments have been identified using $(\Delta E) - (E)$ telescopes

 Clear band corresponding to ¹⁴N has been identified

First beam at the target position at SCC (00:04 hrs 19th January, 2020)

252 MeV N⁴⁺ beam extraction @14 MHz from Superconducting Cyclotron

Neutron monitor showing neutron flux, kept inside the vault



N⁴⁺ beam on BV-12

Variable Energy Cyclotron Centre (Chak-Garia campus) Medical Cyclotron Facility – Sep 2018

IBA Cyclone-30 (15 to 30 MeV, 350 µA p)

Production of SPECT (Ga⁶⁷, TI²⁰¹) and PET (F-18) radio-isotopes and processing of radio-pharmaceuticals used in Nuclear imaging of cancerous tumors

Variable Energy Cyclotron Centre (Chak-Garia campus)

No. of sectors : 4 Hill field : 17 T Valley field : 0.12 T Sector angle ~55° Magnet Diameter : 3 m Weight : 50 Tonnes RF : 40 kW RF amplifier Freq - 66±2 MHz Two Dee structures at opposite valleys Max Dee voltage 50 kV Max power dissipation per cavity 5 kW

• IBA didn't agree to do the commissioning @original cost due to delay in civil construction : Commissioned by VECC

• Commissioned by VECC – Machine + Interface

Variable Energy Cyclotron Centre (Chak-Garia campus)

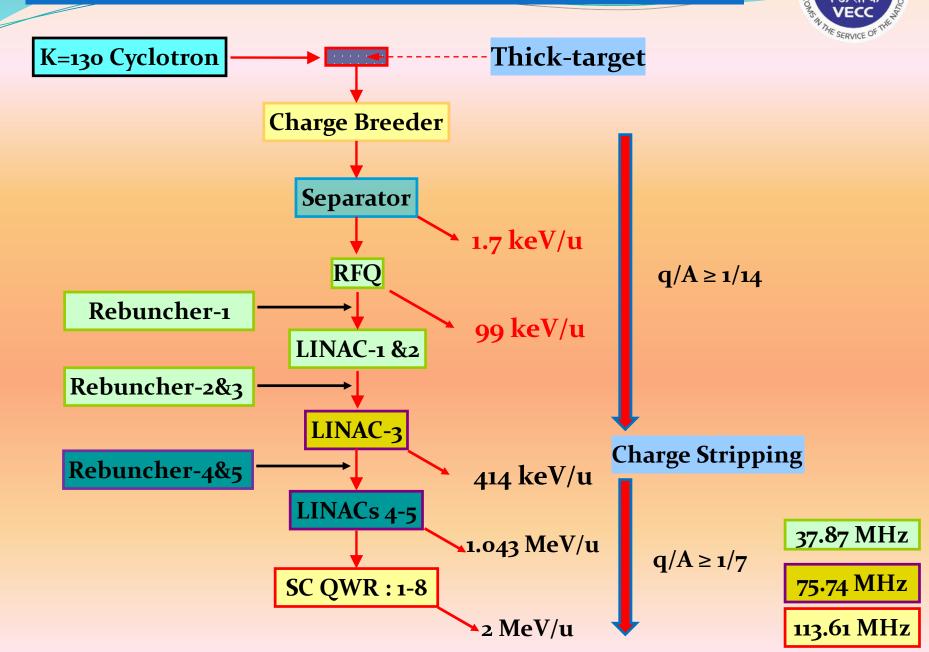
PET Hot cells for production & dispensing of ¹⁸F-FDG

SPECT Hot cells

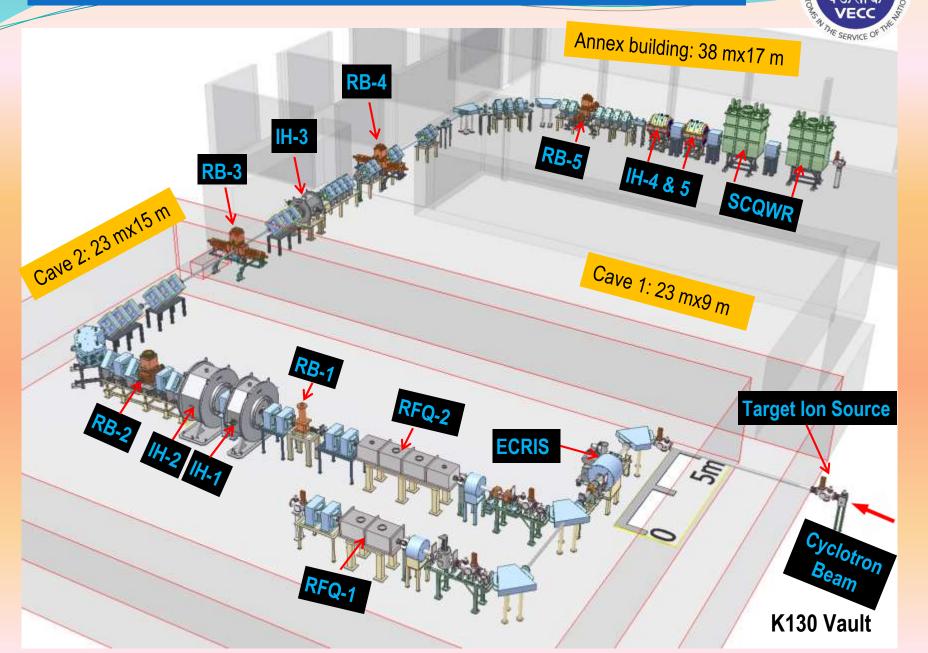
Permission from regulatory authority for regular running of the machine

- ➤ A few batches of F-18 was produced in this cyclotron by irradiation of H₂¹⁸O (97% enriched) [¹⁸O(p,n)¹⁸F] using 18 MeV proton beam.
- > Synthesis of 18 F-FDG from 18 F- (Fluoride) was carried out.
- The physico-chemical and bio quality control tests were performed as per USP specifications with satisfactory results.
- The results were submitted for RPC (Radiopharmaceuticals Committee) clearance for manufacture and supply of the ¹⁸F-FDG injection for clinical use in patients.
- Commercial production and supply of FDG started in June 2020.

The following radiopharmaceuticals successfully produced on trial basis and will start commercial production after obtaining RPC clearance.


- ➤ Ga-67-citrate.
- ≻ Ga-68-PSMA
- Ga-68-Dotatate
- > TI-201-Chloride

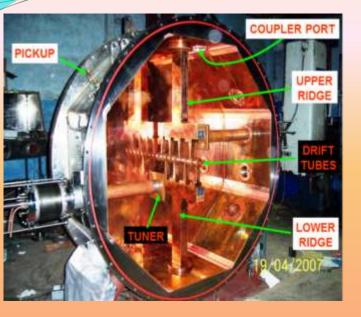
> Near Future target:


- > Production of ⁶⁸Ge ⁶⁸Ga generator.
- Production of Pd-103

Future Plan:

- Production of lodine-123 radioisotope from Xenon gas target.
- Production of other radioisotopes

हि की सेवा में

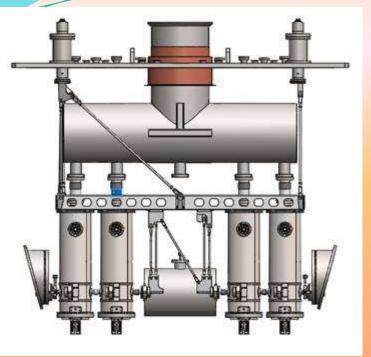

रिकी सेवा मे

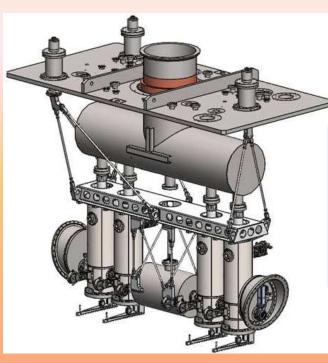
RB₂

		2			
RIB	Prod. route	T1/2			
¹⁴ O	¹⁴ N(p, n)	71 S			
⁴² K	⁴⁰ Ar(α,pn)	12.36 hr			
43 K	40 Ar(α ,p)	22.3 hr			
⁴¹ Ar	⁴⁰ Ar(α,2pn) 109 min				
¹¹¹ In $^{nat}Ag(\alpha,xn)$ 2.8 days					
Typical intensity 1,000 – 10,000 pps					

हिंद सेवा में प्र

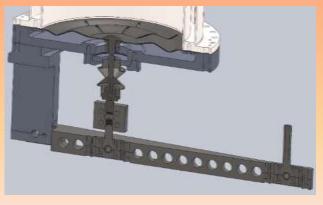
THE SERVICE OF

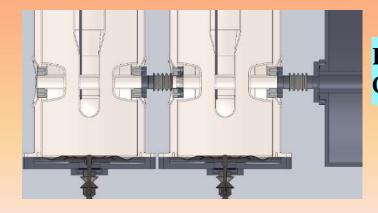



A tran at the transformer of the

Superconducting Quarter Wave Resonator : 1-2 MeV/u

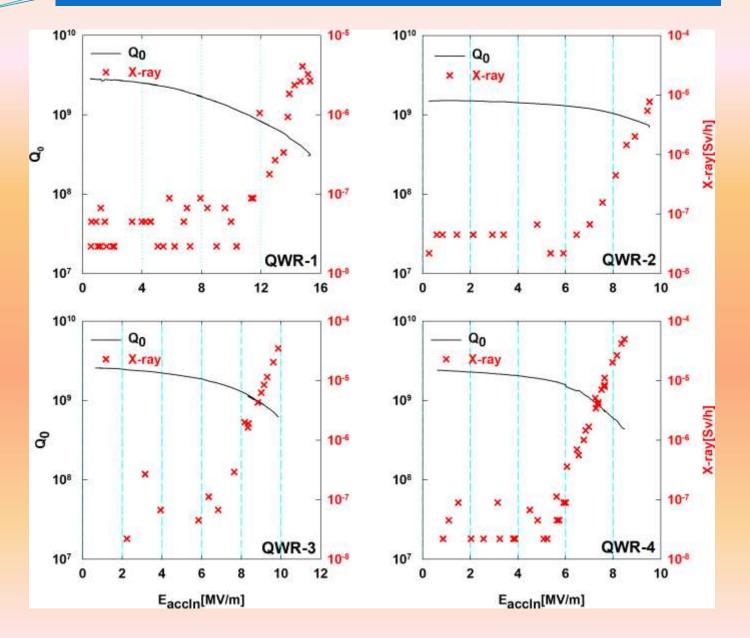
Frequency [MHz]	113.61	
β ₀ [%]	5.5	
No. of resonators	8	
Initial/final energy (MeV/u)	1.04/2.0	
E _{acc} [MV/m]	6	
E _{peak} /E _{acc}	~ 4.6 Field	Emission
B _{peak} /E_ _{acc} [mT/(MV/m)]	~ 8.5	Quenching
B _{peak} [mT]	51 @6 MV/m	
E _{peak} [MV/m]	28 @6 MV/m	
U [J]	1.836 @6 MV/m	
U/(E_ _{acc}) ² [J/(MV/m) ²]	0.051	
R _{sh} /Q [Ohm]	491.3	





Lattice comprise of two cryo-modules:

Each have 4-QWRs and 1-SC Solenoid


Hermetically sealed QWR cavities

SERVICE

Niobium QWR Cavities during fabrication

Variable Energy Cyclotron Centre (Bidhan Nagar) ISOL post-accelerator type RIB facility

K=130 Room Temperature Cyclotron

K=500 Super-conducting Cyclotron

30 MeV Medical Cyclotron

ISOL post-accelerator type RIB facility Performing well in delivering light & heavy ions to experimentalists

Successful beam extraction

Commercial production & supply of PET isotopes started

Successful development & testing of QWRs @113.61 MHz

SPECT /PET Radioisotope	Half Life	Application
²⁰³ TI(p,3n) ²⁰¹ Pb → ²⁰¹ TI 98% enriched	3.06 d SPECT	Myocardial perfusion (Evaluates heart's function & blood flow)
¹²⁴ Xe(p,2n) ¹²³ Cs→ ¹²³ Xe→ ¹²³ I	13.2 h	Myocardial metabolism,
¹²⁴ Xe(p,pn) ¹²³ Xe→ ¹²³ I	<mark>SPECT</mark>	Neuroendocrine tumor imaging
⁶⁸ Zn(p,2n) → ⁶⁷Ga	3.26 d	Soft tissue tumor imaging
98% enriched	SPECT	Broncogenic carcinoma
¹¹² Cd(p,2n) → ¹¹¹ In	2.8 d	Cisternography, Abscess imaging,
98% enriched	SPECT	Tumour imaging
¹⁸ O(p,n) → ¹⁸ F 95% enriched HW	1.8 h PET	FDG: Use in oncology, brain function studies and cardiology NaF: Bone scan

Radioisotope production using up to 18MeV energy proton beam

	Medical Isotope	T _{1/2}	Use	Nuclear Reaction	Energy Range (MeV)	Applications / Comments
	₁₈ F	109.8m	PET	₁₈ O(p,n)	8 - 17	Used for the assessment of glucose metabolism in the heart, lungs, and the brain. For use in diagnosing Alzheimer's disease. FDG – Oncology, cardiology and neurology NaF – WB bone scan
	11C	20.4m	PET	11B(p,n)	8 - 20	
Î	11C	20.4m	PET	₁₄ N(p,)	12	Used for studying brain physiology and pathology, in particular for localising
Ī	13N	9.96m	PET	₁₆ O(p,)	8 - 18	epileptic focus, and in dementia, psychiatry, and neuro-pharmacology
	15 ⁰	2m	PET	15 15 15 15 15 15 15 15	10-15	studies. They also have a significant role in cardiology.
	₆₄ Cu	12.7h	SPECT	₆₄ Ni(p,n)	5 - 20	Used to study genetic diseases affecting copper metabolism, such as Wilson's and Menke's diseases, for PET imaging of tumours, and also cancer therapy. Tracer for blood flow, hypoxia and cell binding studies as PTSMa .
	_{99m} Tc	6h	SPECT	₁₀₀ Mo(p,2n)	19	proton irradiation of an enriched Molybdenum-100 target Used to image the skeleton and heart muscle, in particular; but also used for brain, thyroid, lungs (perfusion and ventilation), liver, spleen, kidneys (structure and filtration rate), gall bladder, bone marrow, salivary and lachrymal glands, heart blood pool, infections and numerous specialized medical studies
	₁₀₃ Pd	17.5d	Therapy	103Rh(p,n)	10 -15	prostate cancer diagnostic & therapy
	₁₂₄ I	4.1d	PET	₁₂₄ Te(p,n)	10 -18	Both PET imaging and radiotherapy. The interest is primarily related to relatively long half-lives (4.14 days). Such properties would enable studies to be performed where the kinetics are slow and exceed the ability for imaging with 18F
	₆₈ Ga	68m	SPECT	₆₈ Zn(p,n)	15	neuro-endocrine tumour imaging ⁶⁸ Ga-DOTA-TATE (DOTA-Tyrosine-3- Octreotate) for diagnosis of neuroendocrine cancers and ⁶⁸ Ga-PSMA (Prostate specific Membrane Antigen) for prostate cancer diagnosis.

Radioisotope production using above 18MeV energy proton beam

Medical Isotope	T _{1/2}	Use	Nuclear Reaction	Energy Range (MeV)	Application / Comments
15 O	2m	PET	₁₆ O(p,pn)	>26	PET imaging
₆₇ Cu	61.9h	SPECT	₆₈ Zn(p,2p)	>40	High uptake of Cu-67 in the tumor as well as in the liver and kidney, which are the major organs for copper metabolism. The longer-lived 67Cu decays exclusively by β – emission and has been used to label monoclonal antibodies and antibody fragments for radioimmuno- therapy
₆₇ Ga	78.3h	SPECT	₆₈ Zn(p,2n)	20-40	Ga 67-citrate used to diagnose cancer, such as Hodgkin's disease, lymphoma, or lung cancer. Also used to detect acute swollen lesions
₈₂ Sr/ _{82m} Rb	25d/ 5m	PET	₈₅ Rb(p,4n) ₈₂ Sr →Rb	50 -70	Rubidium-82 used in myocardial perfusion imaging. Rapid uptake by myocardiocytes for identifying myocardial ischemia in PET imaging.
111In	67.2h	SPECT	₁₁₂ Cd(p,2n)	18 - 30	Indium-111 for specialized diagnostic applications, e.g., labelled antibodies. Indium-111 oxine useful for labelling blood cell components
₁₂₃ I	13.2h	SPECT	$_{124}$ Xe(p,2n) ₁₂₃ Cs →123Xe→	25 – 35	sodium Iodide-I-123 used in nuclear medicine for the diagnostic study of thyroid disease.
₁₈₆ Re	90.6h	Therapy/ SPECT	₁₈₆ W(p,n)	>18	The Renium-186 HEDP (1-hydroxy-ethylidene-1,1diphosphonic acid) complex, used for palliative treatment of bone metastases originating from breast or prostate cancer.
₂₀₁ Tl	173.5h	SPECT	$_{203}$ Tl(p,3n) $_{201}$ Pb \rightarrow	27 – 35	Thallium-201-Chloride used in myocardial perfusion imaging (MPI) using either planar or SPECT techniques for the diagnosis and localization of myocardial infarction.