

Advanced laser-plasma accelerator R&D plans at PAL-ITF

Inhyuk Nam On behalf of the PAL-ITF team

- History of PAL-ITF (injector test facility)
- Facility R&D programs up to now
- Re-arrangement of two e-beam lines at PAL-ITF
- On-going R&D activities
- Summary

Tunnel 3.5(width) X 19.2(length) X 2.5(height) m

80 MW, 10 Hz RF source With LLRF

Ps Ti:sapphire, 15 mJ

2012

1

ITF History

- 2011~2012, construction (135 MeV injector performance demonstration for XFEL)
- Dec. 2012, First beam
- 2013, IR laser cleaning

M. S. Chae J. H. Han

Oct. 2013, emittance goal (0.5 µmrad) achieved

2012~2014, optical timing test

Kwangyun Jung, et al., *Opt. Lett.* **39**, 1577(2014)

Kwangyun Jung, et al., J. Lightwave Technol. 32, 3742(2014).

~2015, RF system, diagnostics test

LLRF

BPM

Wire scanner

ITF parameters

e-beam parameters

Laser parameters (760nm, Ti:sapphire)

	Gun - I	Gun - II	XFEL
Charge	<250 pC	<250 pC	
Emittance	~0.5 µm	~0.5 µm	
Energy	<6 MeV	70 MeV	
Energy spead	<2x10 ⁻³	~1x10 ⁻⁴	
Rep. rate	10 Hz	10 Hz	60 Hz
RF Phase stability	5x10 ⁻² deg	5x10 ⁻² deg	1x10 ⁻² deg
RF Amp. stability	5x10 ⁻⁴	5x10 ⁻⁴	1x10 ⁻⁴
Dia ara anti an			

Diagnostics

- ICT, BPM, Screen monitor, BAM, energy analyzer

	ITF	XFEL
Power	14 mJ (760 nm) ~1 mJ (253 nm)	9 mJ (760nm)
Pulse width	> 1 ps (norm. 3ps)	
Rep. rate	120 Hz	
Power stability	0.2% (760 nm) <1% (253 nm)	
Beam size At Gun	0.1~3mm (full beam)	
Sync. jitter	~100 fs	~10 fs

Gun-II emittance test

♦ GUN-II

- Alternative RF gun for PAL-XFEL
- Coaxial coupler type
- f = 2856 MHz
- $-Q_0 = 14400$
- $f_{rep} = 10 \text{ Hz}$
- τ_{pulse} = 2.5 μ S

Virtual cathode (laser profile)

E- beam image at 1st screen

	GUN-I	GUN-II
Repetition rate (Hz) @ $E_{cathode,max} = 120 \text{ MV/m}$	120 (<mark>60</mark>)	700 (<mark>10</mark>)
ε _{n,rms} (nmrad) @ 200 pC	0.3 (<mark>0.35</mark>)	0.2 (no meas.)

GUN-II Beam profile

GUN-I Section

(200 pC, 6 MeV, 10 Hz)

GUN-II Section (200 pC, 70 MeV, 10 Hz)

ITF GUN-II beam line (2021.3.8)

Coaxial Coupling GUN-II

Developed discharge capillary source

(D=1 mm)

Beam size, emittance using 5 pC beam

S.Y Kim (UNIST)

Phase space at target position

For the low-emittance less than 0.5 mm mrad, we need to cut the initial distribution to reduce the nonlinear space charge force, and need to adjust the booster position

S.Y Kim (UNIST)

Plasma lens simulation

PIC parameters

 $\begin{array}{l} \underline{Capilary}\\ I_0 = 80 \; [A]\\ R_0 = 500 \; [\mu m]\\ L = 2 \; [cm] \end{array}$

 $\begin{array}{l} \underline{e\text{-beam}} \\ n_0 &= 2.3 \times 10^{19} \ [m^{-3}] \\ L &= 100 \ [\mu m] \\ \varepsilon_N &= 0.305 \ [mrad \ mm] \\ \beta_x &= 10 \ [m] \\ \alpha_x &= 7 \\ charge &= 1 \ [pC] \end{array}$

Myung Hoon Cho (PAL)

Plasma lens simulation

Myung Hoon Cho (PAL)

60

(3)

(1) (2) (3)

40

e-beam (from RF photocathode)

- Charge: 5 pC
- Pulse duration: 30 fs (FWHM)
- Energy: 70 MeV
- Emittance: 0.2 mm mrad
- Beta: 10 um

Laser

- a₀: 3
- $\lambda_0 = 800 \text{ nm}$
- Pulse duration: 40 fs
- Pulse width: 50 um (FWHM)

Plasma

- Ne: 3 x 10¹⁷ cm⁻³
- Ramp: 30 mm
- Guiding structure

PIC parameters

- 2 dimension
- Box size: 200 x 200 μm²
- $dx = \lambda_0/20$
- $dy = \lambda_0/10$

LWFA with external injection

Results:

- Beam energy = 2 GeV
- Emittance = 4 mm mrad
- Energy spread = 4%

Target:

- Beam energy = 2 GeV
- Emittance = 1 mm mrad
- Energy spread = < 1%

Need to optimize !

40

Self-Modulated LWFA with external electron beam injection

Beam transverse size: 50 um \rightarrow ~5 um

Discharge capillary plasma waveguide R&D

- Controlled plasma density gradient
- Stable discharge assisted with a nano-second laser system
- Compact discharged system
- Minimum gas leak to the chamber

Measurements

- Betatron radiation X-ray: $\sim 0.1 4 \text{ keV}$
- Modulated energy spectrum by wakefield

e-beam/THz research at ITF

> THz streaking for electron bunch characterization

> THz-driven electron bunch compressor

L. Zhao et al., Phys. Rev. X 8, 021061 (2018)

50 HT

30

THz

250 µm

10 µm

E. C. Snively et al., Phys. Rev. Lett. 124, 054801 (2020)

Dogeun Jang (PAL)

\checkmark Injection pulse type

- Type I: Tight focusing w/ single cycle pulse \rightarrow < 5 um, < 5 fs
- Type II: Simultaneous spatial & temporal focusing (SSTF)
- Type III: Combination of Type I & II

 \checkmark No intrinsic jitter between pump laser and e- beam for UED experiments

Summary

- The tested photocathode at PAL-ITF has been successfully used for PAL-XFEL
- Recently, PAL-ITF has been re-arranged for future accelerator R&D and e-beam users
- Two electron beam lines are installed:
 - GUN-I: 1-5 MeV, < 100 fs for UED
 - GUN-II: 10 70 MeV, 30 fs \sim 2 ps for advanced accelerator R&D
- Developed discharge capillary source for LWFA R&D and plasma lens
- Planned experiments
 - Plasma lens
 - LWFA with external injection
 - Diagnostics of ultrashort e-beam using THz
 - THz driven accelerator, compressor
 - Laser driven plasma photocathode (Laser only)
 - Compact mm-scale accelerator
- We currently initiate various advanced accelerator R&D programs
- Near future, we will upgrade the laser system up to tens of TW scale for LWFA, and install a bunch compressor for ultra short e-beam with a high current.

Members and collaborators

Advanced Compact Accelerator R&D TFT at PAL

- Chang-bum Kim ITF director, e-beam diagnostic
- Inhyuk Nam ITF operation, e- beam/plasma/THz research
- Changki Min ITF accelerator, ITF laser system
- Sung-Hoon Jung ITF laser system
- MyungHoon Cho Simulation code, e-beam/plasma research
- Minseok Kim Laser system, laser/plasma research, SSTF
- Dogeun Jang THz source, e-beam/THz research
- Suckho Ahn Discharge system
- ➢ Garam Han − e-beam transport system
- Seung Hwan Shin Compact mm-scale accelerator
- Hyung Sup Gong Fabrication of compact mm-scale accelerator

Collaborators

- Prof. Hyyong Suk, Si Hyun Lee (GIST)
- Prof. Mose Jung, Prof. Min Sup Hur, Seong-Yeol Kim, Chang-Kyu Sung (UNIST)

Thanks for your attention