

Beam-Driven Wakefield Accelerator Research at UNIST, Korea

Moses Chung[#]

Ulsan National Institute of Science and Technology (UNIST)

AFAD Workshop 2021

*Acknowledgements: ITF group (PAL), AWAKE collaboration (CERN), BLAST program (LBNL), AWA group (ANL), PITZ group (DESY) #Email: <u>mchung@unist.ac.kr</u>

Ulsan and UNIST

Ulsan is South Korea's eighth-largest city overall, with a population of over 1.1 million inhabitants.

Ulsan is the industrial powerhouse of South Korea.

It has the world's largest automobile assembly plant operated by the Hyundai Motor Company; the world's largest shipyard, operated by Hyundai Heavy Industries; and the world's third largest oil refinery, owned by SK Energy.

In 2017, Ulsan had a GDP per capita of \$65,093, the highest of any region in South Korea.

UNIST

(Ulsan National Institute of Science and Technology) = One of the four public universities in South Korea which are dedicated to research in science and technology, founded in 2009

UNIST

Background

~2010

The open-access journal for physics

EDITORIAL

Focus on laser- and beam-driven plasma

accelerators

Chan Joshi¹ and Victor Malka²

¹ University of California Los Angeles, Los Angeles, CA 90095, USA ² Laboratoire d'Optique Appliquée, Palaiseau, France E-mail: joshi@ee.ucla.edu and victor.malka@ensta.fr

New Journal of Physics **12** (2010) 045003 (5pp) Received 19 March 2010 Published 30 April 2010 Online at http://www.njp.org/ doi:10.1088/1367-2630/12/4045003

There are far fewer PWFA than LWFA experiments being performed worldwide. This is because there are far fewer facilities that can provide the high-current, highly relativistic charged particle beams that are needed for such experiments [21]. The two main facilities are at the SLAC National Accelerator Laboratory and the Brookhaven National Laboratory, both in the United States. PWFA development is driven by its application in high-energy physics.

- → Recently, European countries started considerable investment for beam-driven wakefield accelerator researches (e.g., AWAKE).
- → In Korea, still laser-driven researches are dominant; only recently a full-scale research program on beam-driven wakefield took off, motivated by experience in producing high-current & highquality electron beams for XFEL.

Table of contents

- 1. Simulation efforts for various beam-plasma interactions
- 2. Design and optimization of external electron beam injection beamline
- 3. Status of plasma source development at UNIST
- 4. Injector Test Facility at Pohang Accelerator Laboratory (PAL ITF)
- Beam manipulation with Double Emittance Exchange (DEEX) beamline at ANL-AWA
- 6. Conclusion

Simulation Efforts

Plasma instabilities in beam-driven plasma wakefield; Trojan horse injection; and seeded self-modulation for AWAKE RUN 2 experiments

Beam-plasma instabilities in long beam ($k_p \sigma_z \gg 1$) and over-dense ($n_b \ll n_0$) plasma regime

Beam-plasma instability can be selectively induced by adjusting beam radial size and transverse emittance.

Trojan horse injection: Space charge effect

[K. Moon et al., Phys. Plasmas 26, 073103 (2019)]

Witness bunch longitudinal phase space is strongly affected by space charge field especially during short propagation distance.

UNIST

AFAD Workshop

-2

KoE

0

beam

2

Center of the driving

-4

-6

AWAKE RUN2 experiment and e-beam seeding

UNIST

Seeded Self-Modulation phase determination by seed electron bunch

UNIST

Seed beam energy 10, 20 MeV ($\langle v_{z,s} \rangle \ll \langle v_{z,p} \rangle {\sim} c$)

- Dephasing seed wakefield during SSM development.
- Seed and SSM driven wakefields alternately interfere constructively and destructively. Phase oscillations observed (red dotted boxes): Any effects?

Seed beam energy 160 MeV ($\langle v_{z,s} \rangle \,{\sim} \langle v_{z,p} \rangle {\sim} c$)

- Non-evolving seed wakefield during SSM development.
- Seed and SSM driven wakefields interfere constructively.

We are looking for electron bunch parameters that lead to the "best" self-modulation as an ongoing study.

→ Preliminary experiment on electron beam injection into plasma (next month)
 → Proton run in November

Design and optimization

Studies on optimization of electron transfer line and beam loading into beam-driven plasma wakefield

AFAD Workshop

- Beam-driven plasma wakefield acceleration (PWFA) with external electron injection scheme
 - Need to control / optimize transfer line to match the electron beam parameters for injection requirement
 - Two ultimate goals of PWFA: increase in acceleration (capturing) efficiency and preservation of emittance
- Research motivation:

UNIST

- Coherent synchrotron radiation (CSR) on the electron beam: source of emittance growth and non-linear distortion of beam phase space
- Investigation of beam loading with CSR effect: is it significant on additional emittance growth during acceleration?
- > Ref.: S.-Y. Kim, S. Doebert, E. S. Yoon, M. Chung, Phys. Rev. Accel. Beams 24, 021301, 2021

0.5

0

-0.5

-1.5

-2

-2.5

-1

- PWFA and beam loading simulations with simplified model*
 - Electron beam density: 31 times higher than background plasma density, generating blow-out regime
 - At electron beam head, blow-out starts to develop; focusing gradient is not constant along slice
 - Inside blow-out regime, focusing gradient is constant and very strong
 - This feature is called head-erosion (emittance growth is mostly at the beam head; next slide)
- *: V. K. Berglyd Olsen, E. Adli, P. Muggli, Phys. Rev. Accel. Beams 21, 011301, 2018

- Slice emittance of the electron beam after
 5 m plasma source
 - Initial emittance before injection: ~2 mm mrad
 - Black solid and dashed lines: longitudinal electron distribution and initial emittance
 - (a): case where the beam centroid and angle before injection are not adjusted
 - (b): case where the beam centroid and angle are adjusted
 - Blue and orange curves at (a): case without CSR effect and fully suppressed case, respectively
 - If the CSR effect along the transfer line is not suppressed: additional increase of the emittance at the electron head is significant

Ref.: S.-Y. Kim, S. Doebert, E. S. Yoon, M. Chung, Phys. Rev. Accel. Beams 24, 021301, 2021

After 5 m plasma source:

UNIST

- When the CSR effect is not fully suppressed, distortion of the slice distribution at the head becomes significant
- Also, CSR effect leads to the increase of the energy spread: but it does not contribute to the further growth during acceleration
- > Ref.: S.-Y. Kim, S. Doebert, E. S. Yoon, M. Chung, Phys. Rev. Accel. Beams 24, 021301, 2021

Plasma source development

Status of Argon discharge plasma source for beam-driven plasma wakefield acceleration experiment

Plasma source: target

- Plasma source for plasma wakefield experiments
 - Electron beam self-modulation / other instabilities
 - Electron acceleration through plasma wakefield
- Design target
 - Plasma density: order of 10¹⁵/cm³
 - Dimension:
 - Diameter 10 mm
 - Length 100 mm / 200 mm
 - Attachable for any electron beamline

Schematic view for detail

Plasma source: progress

- Left figure: plasma source system
- Pressure control of the plasma source
 - Vacuum test done (minimum ~ 10^{-3} mbar)
 - Gas injection & pressure control
 - Gas pressure: maintained at 10⁻¹ mbar

Plasma source: plan

- Discharge circuit development
 - Based on DC high voltage
 - Voltage: Maximum 2 kV
 - Apply pulsed current periodically in same voltage
 - Frequency: 10 Hz (same as beam repetition rate)
 - Discharge current: over 500 A
 - It makes arc discharge, which allows higher plasma density

- Plasma density measurement
 - Use laser to measure spectral line
 - Based on Stark effect
 - Planned to carry out the measurement at Pohang Accelerator Laboratory

Reference: G. Loisch, Ph.D. Thesis (2019)

Injector Test Facility

Optimization and commissioning of electron injector: Injector Test Facility at Pohang Accelerator Laboratory

(Seong-Yeol Kim's contribution + More by Dr. Nam's talk)

Commissioning status of PAL – ITF

- Commissioning of the electron injector of PAL ITF
 - Electron beam focusing experiment using active plasma lens
 - Electron beam-driven plasma wakefield experiment
 - Source of external injection for laser-wakefield acceleration
 - Experiment using 8-port BPM for coupling measurement
- For those planned experiments: parametric scanning and optimization based on multi-objective genetic algorithm

Beam energy (gun // booster)	6 // 70 MeV
Beam charge	200 pC
Initial UV pulse length	3 ps FWHM
Normalized emittance	< 1 mm mrad
RMS beam size	0.1 mm (for lens experiment)
RMS energy spread	~ 0.1%

J. Hong, C.-K. Min, J.-H. Han, Performance of S-band photocathode RF gun with coaxial coupler, In Proc. FEL 2019

Injector optimization based on genetic algorithm

- Multi-Objective Genetic Algorithm based injector optimization
 - # of individuals in population: 36, # of generations: 150
 - ASTRA tracking simulation used with Python
 - 4 input variables: B-field and position of main/bucking solenoids
 - 2 targets: beam size of 0.22 mm, emittance of 0.47 mm mrad
 - Further optimization on-going with large # of generations

Fitness functions for emittance and beam size

$$f_{\epsilon} = 1 - e^{-\left(\frac{x - \epsilon_{target}}{\epsilon_{target}}\right)^2}, \quad f_{\sigma} = 1 - e^{-\left(\frac{y - \sigma_{target}}{\sigma_{target}}\right)^2}$$

Injector optimization based on genetic algorithm

Neural-Network machine learning based optimization \geq

(mm mrad)

UNIST

Beam manipulation

Longitudinal phase space manipulation using Double Emittance Exchange (DEEX)

Longitudinal phase space manipulation using DEEX

Obirphese the ngitucion appelses or space manipulation

These functions can be carried out simultaneously.

Experiment results (preliminary)

Tunable bunch compression

Longitudinal chirp control

Experiment results (preliminary)

Nonlinear longitudinal phase space manipulation

Conclusion

- Research on beam-driven plasma wakefield has begun in Korea
 - Beam-plasm instabilities, witness beam injection, seeded self-modulation, beam manipulation, etc.
 - Participation in AWAKE experiments at CERN and DEEX/AWA at ANL
 - Design of Argon discharge plasma source: application to PWFA experiments
- Various studies and experiments at PAL–ITF are planned (More by Dr. Nam's talk)
 - Active plasma lens experiment with electron beam
 - PWFA LWFA acceleration experiment with external injection scheme
 - Optimization of electron beam with genetic algorithms and machine learning
 - Beam manipulation for PWFA application (e.g., control of energy spread & bunch shape)

People Undergraduate Graduate Research News & Board

THE PHYSI

Plasma in Nuclear Fusion, Beam, and Universe

Plasma & Beam Physics

Home

