New compact electron acceleratordriven neutron facility AISTANS

Koichi Kino^{a,b}

- ^{a.} National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- ^{b.} Innovative Structural Materials Association (ISMA), Chiyoda-ku, Tokyo, Japan

Contents

- 1. Introduction of AISTANS
 - Background
 - Method (Bragg edge imaging)
 - Target parameters
 - Main components (Optimization)
- 2. Current status
 - Electron LINAC
 - Neutron source
 - Neutron transportation and beamline
- 3. Flux measurement
 - Measurement system
 - Analysis
 - Results
- 4. Summary

1. Introduction: Background (Purpose)

AIST ISMA

Koichi Kino, AFAD2021, 16th Mar 2021

3

1. Introduction: Method of measurement

Combination of AISTANS and Bragg edge imaging \rightarrow Development of structural materials

Koichi Kino, AFAD2021, 16th Mar 2021

1. Introduction: Target parameters

Neutron flux

At sample position

- 10cm × 10cm beam
- 2D ND maximum counting rate 10⁵ ~ 10⁶ cps (nGEM, μNID)

Assuming 10 % detection efficiency

 $\geq 10^4 \sim 10^5 \text{ n/cm}^2/\text{s}$

SMA

Neutron wavelength resolution

- Moderator (Decoupled Solid methane)
- •Flight path length (8m) $(\Delta\lambda/\lambda = \Delta t/t)$

Clear target parameters for AISTANS design

Koichi Kino, AFAD2021, 16th Mar 2021

1. Introduction: Main components

Koichi Kino, AFAD2021, 16th Mar 2021

6

2. Current status: Electron LINAC

Simple electron LINAC and transportation system

2. Current status: Electron LINAC

Beam transportation : Under commissioning

Koichi Kino, AFAD2021, 16th Mar 2021

8

2. Current status: Electron LINAC

Electron beam at target

Energy: ~40 MeV Peak current: ~100 mA Pulse width:4 µs Repetition rate:50 Hz Power: ~1 kW

Beam pulse observed at the target

Beam pulse data (charge) \rightarrow Absolute flux spectrum evaluation

2. Current status: Neutron source

Neutron beam from solid methane moderator : 2020~

Koichi Kino, AFAD2021, 16th Mar 2021

 $10_{/19}$

2. Current status: **Solid methane moderator**

Solid methane is produced in the neutron source.

2. Current status: **Neutron transportation**

Selectable : Super mirror guide tubes or Vacuum ducts

2. Current status: Neutron beamline

Entrance

Koichi Kino, AFAD2021, 16th Mar 2021

2. Current status: **Neutron beamline**

3. Flux measurement: System

Koichi Kino, AFAD2021, 16th Mar 2021

3. Flux measurement: Analysis

Koichi Kino, AFAD2021, 16th Mar 2021

3. Flux measurement: **Results**

Koichi Kino, AFAD2021, 16th Mar 2021

- First thermal-cold pulsed neutron beam from the decoupled solid methane moderator at AISTANS
- Thermal peaks were observed at an expected neutron wavelength.
- Roughly in agreement between experiment and calculation flux spectra in absolute values
- Many Bragg edge imaging data will be provided for structural materials.

Acknowledgement

This is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Thank you very much for your kind attention.

References
[1] K.Kino *et al.*, Nuclear Instruments and Methods in Physics Research, A 927 (2019) 407-418.
[2] B.E. O'Rourke *et al.*, Nuclear Instruments and Methods in Physics Research, B 464 (2020) 41–44.

