Neutron Detector with Ceramic GEM

Shoji Uno (KEK)

Kazuki Komiya, Yoko Takeuchi (Tokyo Metropolitan Industrial Technology Research Institute)

at WG2 in AFAD Online, BINP 2021.3.16

Q

KEK50年

New GEM

- One big issue is that serious damage occurs in GEM foils.
 - Large charge stores in large capacitance of GEM foil.
 - Small discharge (trigger)
 - -> Large discharge -> Serious damage (Carbonization)

Carbonization

Broken GEM

Image with SEM

• To avoid serious damage

Ceramic GEM

- Resistive GEM (RE-GEN)
 - Resistive electrode instead of Cu \rightarrow Sacrifice rate capability

EXEK 202

• Teflon (PTFE, polytetrafluorethylene) GEM

 \rightarrow Some difficulty in production

2. Low Temperature Co-fired Ceramic (LTCC) GEM

Q

KEK50年

3

<u>LTCC-GEM</u>

LTCC-GEM

Q

KEK50年

- Hole pitch : 200 μm (140 μm)
- Thickness : 100 μm (50 μm)

EXEK 202

• Material of Electrode : Au (Cu)

Neutron detection

EXEK 202

- Thermal (or cold) neutron : Boron
 - $n + {}^{10}B \rightarrow Li + \alpha$ $\sigma = 3840 b$ for 25 meV neutron
 - Large cross section
 - Large ionization loss in gas volume for α (Li nuclei)
- High energy neutron (MeV) : Hydrogen
 - Cross section for Boron becomes small. $\sigma \sim 1/\sqrt{E}$
 - Hydrogen is good target.

KEK50年

- Proton comes out.
 - Still, larger ionization loss than electron from gamma.
- Plastic contents large amount of Hydrogen.
- PET : Polyethylene terephthalate

Neutron Energy (eV)

Hybrid cathode

- One hybrid cathode
 - to detect both thermal neutron and MeV neutron

Single GEM setup

- Single LTCC GEM + Hybrid cathode
 - 100×100 mm aluminum frame with 90° mm hole
- Register chain is used to provide each voltage for each part with single HV supply.

Note : Voltage and field strength are correspond to 100% HV setting.

Q

KEK50年

Electronics board

ASD 32ch/chip with analog monitor

Commercial AC adapter can be used.

Block diagram

Analog monitor for a selected sig.

Thermal Neutron

- With Polyethylene moderator using 252 Cf radioactive source
- Nice HV curve
- Clear image
 - Fine structure can be seen.

HV = 100%, ~15 h data taking

MeV Neutron detection

- Without Polyethylene moderator using ²⁵²Cf radioactive source
- Not so good HV curve
 - MeV Neutron may react in Boron also.

HV =108%, ~16 h data taking

Gamma detection

- Co-60 radioactive source
- Quick increasing after 116%
- No clear circle image.

HV =120%, 1 h data taking

Energy spectrum on simulation

Higher efficiency for thermal neutron

EXEK 202

Expensive ³He Gas is not necessary. No pressure vessel Free readout pattern High resolution Position and Time Insensitive against γ-ray Capability against high counting rate

Boron GEM

- Now, we are sputtering the boron on the various plates by ourself.
 - Many parameters can be optimized.
- Test production of boron GEM just started.
- Unfortunately, the sputtering machine has a trouble, now.
 - We can not make GEM with normal size $(100 \times 100 \text{ mm}^2)$.
 - After the repairing, the test production will start again.

Boron GEM with smaller size

EXEK 202

Summary

- Ceramic GEM is working fine without serious damage.
- Our detector system is compact and simple.
- Hybrid cathode is working fine to detect both thermal neutron and MeV neutron.
- Boron GEM comes soon.

 \mathbf{O}

KEK50年

