Asian Forum for Accelerators and Detectors 2021

Commissioning of the SXFEL Test Facility

Bo Liu for the FEL team Shanghai Advanced Research Institute, CAS

2021.03.16

Outline

Introduction to the SXFEL

- Commissioning of the SXFEL test facility
 - ≻Timeline
 - TDS based FEL diagnostics
 - ≻HGHG-HGHG cascade
 - ➢EEHG-HGHG cascade
- Outlook

Introduction

- In China, high gain FEL development was started in late 1990s, when a DUV-FEL based on HGHG mode was proposed.
- In the past 12 years, the SDUV-FEL test facility (shutdown a few years ago) based on HGHG/EEHG/cascaded HGHG, and the DCLS@DICP Dalian, an EUV-FEL user facility, based on HGHG were constructed.
- In the meantime, SXFEL, a soft X-ray FEL based on HGHG/EEHG/HGHG-HGHG cascade/EEHG-HGHG cascade, has been constructed in Shanghai, and the test facility (phase-I) has been finished, while the user facility (phase-II) is in the commissioning stage.
- A high rep-rate hard X-ray FEL facility based on SASE/self-seeding/EEHG-HGHG cascade is under construction.

SXFEL: Shanghai Soft X-ray FEL Facility

- SXFEL Facility consists of three projects independently funded, SXFEL test facility (SXFEL-TF) + SXFEL user facility / Shanghai soft X-ray FEL beamline project (SXFEL-UF + SBP), located at the SSRF campus;
- **SXFEL-TF** was initiated in 2006 and funded in 2014, its 0.84GeV linac and main undulators started to be installed in 2016, alternating installation/modification and commissioning are still going on;
- SXFEL-UF (+SBP) was funded to upgrade the linac energy to 1.5 GeV for building two undulator lines with 5 experimental stations in the water window region.

X-ray FEL Test Facility: SXFEL-TF

- A seeded FEL with two-stage HGHG or EEHG-HGHG cascade based on a ~0.84GeV linac
- Located in the SSRF campus

FEL parameters

	Baseline (8.8nm)		
Scheme	HGHG-HGHG	EEHG-HGHG	
Harmonics	6 × 5	6 × 5	
Beam energy/MeV	790	790	
FEL wavelength/nm	8.83	8.83	
FEL pulse/fs	100 – 200	100 - 200	
FEL power/MW	>100	>100	

SXFEL-TF Tunnel completion, 2016.04

SXFEL-TF: 0.84GeV C-band linac + undulator line (HGHG/EEHG)

SXFEL-TF commissioning milestones

Undulator Layouts of HGHG and EEHG Schemes at SXFEL

TDS based online single-shot FEL pulse reconstruction

- A TDS based single-shot FEL pulse reconstruction method have been developed for optimization of seeded FEL
- Acquire longitudinal profiles of FEL pulses in real time with a resolution better than 3 fs
- Robust, accurate, online analysis

Traditional method based on TDS has the problem:

- > Need a set of "lasing-off" shots
- Not accurate due to the jitters of linac

TDS based online single-shot FEL pulse reconstruction

A very important tool for seeded FEL optimization:

- Analyse the correlation between two stages online
- Establish a feedback system for laser-electron beam interaction

Case 1: cascaded HGHG at SXFEL

Undulators		Chicanes		
M1: Np $\times \lambda u$	20×8 cm	DS1: length/θ/R56	12m/0-52mrad/0-25mm	
R1: Ns \times Np $\times \lambda u$	$3 \times 75 \times 4$ cm	DS2: length/θ/R56	3m/0-34mrad/0-2mm	
		FB: length/θ/R56	4.46 m/0-47 mrad/0- 7mm	
M3: Np $\times \lambda u$	30×5.5cm			
R2:	$6 \times 125 \times 2.35c$	DS3: length/θ/R56	3m/0-34mrad/0-2mm	
$Ns \times Np \times \lambda u$	m			

Case 1: cascaded HGHG at SXFEL

Saturation of the 1st stage HGHG

Case 1: cascaded HGHG at SXFEL

Saturation of the 2nd stage HGHG

Peak Power (MW)

Longitudinal phase space after lasing

10

10⁰

2

3

Undulators

5

6

Pulse energy/µJ

9.5

Case 2: single stage EEHG at SXFEL

Commissioning of the single stage EEHG

Intensity [arb. units]

0

8

10

12

Harmonic number

14

16

18

- ✓ Two dimensional scanning of various parameters
- ✓ Laser heater is necessary

Case 2: single stage EEHG at SXFEL

Lasing of Echo-11 @ 24 nm

Comparison of bunching distributions, gain curves and spectra of HGHG and EEHG

Case 2: single stage EEHG at SXFEL

Scan the gap of U30 to get bunching distribution at various harmonics

EEHG gain curve@13nm

Lasing of EEHG-30

mageViewer

Case 3: EEHG-HGHG cascade at SXFEL

The bandwidth and central wavelength jitters of HGHG output is much larger than EEHG due to the energy curvature of the e-beam and timing jitter

1st stage HGHG

Comparison of spectra between HGHG and EEHG

Case 3: EEHG-HGHG cascade at SXFEL

- The bandwidth of HGHG <u>cascade@8.8</u> nm is large and sensitive to the laser heater
- > The output central wavelength of EEHG-HGHG is quite stable
- > The output bandwidth of EEHG-HGHG is close to the transform-limited
- The output bandwidth of EEHG-HGHG is not sensitive to the laser heater, however, the LH can suppress spectral sidebands

Summary & Outlook

- A soft X-ray FEL facility is under development in Shanghai, and its phase-I construction and commissioning have been finished.
- Various external seeding schemes have been adopted and tested in the SXFEL test facility. Some schemes will be implemented in the user facility for fully coherent FEL covering shorter wavelength.
- The SXFEL user facility is under commissioning, aiming at serving users in 2021.

Thanks for your attention!

-