

- 1. $0\nu\beta\beta$ physics
- Low-temperature Thermal Calorimeters
 for 0vββ experiments
- 3. The AMoRE project

$0\nu\beta\beta$ and ν (brief intro.)

- 0νββ decay can only happen if neutrinos are massive Majoanana particles (own anti-particles).
 - ✓ fundamental understanding of particle physics
 - $0\nu\beta\beta$ search is the only practical technique to answer.
- The $0\nu\beta\beta$ decay rate ($T^{0\nu}$) is closely related to the mass of neutrinos.
 - ✓ Most sensitive measurement method (if Majorana particle)
- The $0\nu\beta\beta$ decay can only happen if Lepton number conservation is violated.
 - \checkmark New physics beyond the standard model

Double beta decay

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$$

- 2nd order weak process
- ββ(2ν) decay is detectable if 1st order β decay is not allowed.

35 0ν $\beta\beta$ nuclei are found.

ββ-decay nuclei with Q > 2 MeV	Q (MeV)	Abund. (%)
$^{48}Ca \rightarrow ^{48}Ti$	4.271	0.187
⁷⁶ Ge → ⁷⁶ Se	2.040	7.8
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2.995	9.2
⁹⁶ Zr → ⁹⁶ Ru	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.7
$^{110}\mathrm{Pd} \rightarrow ^{110}\mathrm{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
$^{124}Sn \rightarrow ^{124}Ge$	2.228	5.8
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	2.528	34.2
136 Xe \rightarrow 136 Ba	2.479	8.9
150 Nd $\rightarrow ^{150}$ Sm	3.367	5.6
		<u>/</u>

Double beta decay w. & wo. v emission

2ν mode

- A conventional
- 2nd order weak process in NP

 $0v \mod e$

• A hypothetical process only if $m_v \neq 0$, $\overline{v} = v$, $|\Delta L| = 2$

Some history about $\beta\beta$ decay

M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512

- ✓ The study of nuclear structure expected that the <u>2 neutrino mode</u> would have half lives in excess of 10^{20} years
- ✓ First observed directly in 1987.
- ✓ Background: $_{1/2}(U, Th) : 10^{10} y$
- ✓ $_{1/2}(2\nu\beta\beta): 10^{19\sim24}$ years

- E. Majorana, NuovoCimento14 (1937) 171
- G. Racah, NuovoCimento14 (1937) 322
- ✓ The possibility of <u>neutrinos-less decay</u> was discussed in 1937.

W.H. Furry, Phys, Rev. 56 (1939) 1184

- ✓ Specific discussion on $\beta\beta$ on Majorana theory ($0\nu\beta\beta$)
- ✓ Now, we want to look for a process with $_{1/2}(0\nu\beta\beta)$: ~10^{26~28} years

Search for 0vßß

0vββ discovery answers

- Majorana ($v = \overline{v}$) particles not Dirac ($v \neq \overline{v}$)
- Mass scale of neutrinos $(1/\frac{0v}{1/2} \propto \frac{2}{v})$
- Lepton number violation

0vββ decay rate

$$\Gamma_{0\nu} = \frac{1}{1/2} = \frac{0}{0} \begin{vmatrix} 0 \\ 0 \end{vmatrix} = \frac{2}{\beta\beta}$$

<standard process>

- ✓ G_{0v} : Phase space factor: Calculable Atomic physics
- ✓ $|\mathbf{M}_{0v}|$: Nuclear matrix element: Uncertain by 2~3 times, Nuclear physics
- \checkmark **m**_{$\beta\beta$} : Effective neutrino mass: Interesting Particle physics

Model dependent NME (M_{0v})

$$1/T_{1/2}^{0\nu} = G_{0\nu} \left| M_{0\nu} \right|^2 m_{\beta\beta}^2$$

 ✓ Model dependence: 2-3 times spread for each nucleus.

$$1/T_{1/2}^{0\nu} = \frac{G_{0\nu}|M_{0\nu}|^2}{m_{\beta\beta}^2}$$

✓ No significant isotope preference when consider detector mass.

Another uncertainty in the standard process

 g_A : Effective axial-vector coupling constant incorporated in NME

$$1/T_{1/2}^{0\nu} = G_{0\nu} |M_{0\nu}|^2 m_{\beta\beta}^2 \longrightarrow {}^4_A G_{0\nu} |M_{0\nu}|^2 m_{\beta\beta}^2$$

Simple-minded

- ✓ $_{A}$ = 1.27 (no quenching for free nucleon) = 1 (quark)
- ✓ ^A is quenched in β, 2νββ, and possibly 0νββ. ^{eff}_A for 0νββ: 0.4~0.6

Effective value of $g^{\rm eff}{}_{\rm A}$ on $0\nu\beta\beta$

- ✓ Theory predictions: ${}^{\text{eff}}_{\text{A}} = 0.6 \sim 0.8$, <Suhonen PRC 96 (2018) 05550>
 - \rightarrow Even with small ${}^{\text{eff}}_{\text{A}}$ values, 0νββ decay rates are reduced only by 2-6 times.
- Some theortical predictions exist quenching matters with the energy scale
 No or less quenching might be needed on 0vββ. <Dolinski et al arXiv:1906.02723>

 \checkmark Further theoretical and experiemantal studies are needed.

Neutrino mixing, mass, and $0\nu\beta\beta$

Effective ββ mass

$$\left\langle \begin{array}{c} \beta \beta \end{array}\right\rangle = \sum^{3} 2$$
 virtual v exchange

Other measurables in v mass

m of v_e from β end-point

$$_{\beta} = \sqrt{\sum^{3} \left| \right|^{2} 2}$$

Observational cosmology

$$\sum = \sum$$

AFAD-2021

Present knowledge of v mass pattern & scale

$m_{\beta\beta}$ allowed region: "usual" plot

$$1/ \frac{0\nu}{1/2} \propto \frac{2}{\beta\beta}$$

The smaller $m_{\beta\beta}$ is the more difficult to discover $0\nu\beta\beta$.

- \checkmark The mass ordering matters.
- ✓ The lightest $_i$ also matters.

m_{ββ} expected region: "probable" plot

Discovery Probability Distribution <Agostini et al PRD 96 (2017) 053001>

- ✓ Global Bayesan analysis including v osc., m_β , $m_{\beta\beta}$, and Σm_i
- ✓ Flat prior for the Majorana phases
- ✓ see also Caldwell, et al, PRD 96 (2017) 073001.

Physics uncertainties after $0\nu\beta\beta$ discovery

Master formula of $(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$ $\Gamma_{0\nu} = {}_{0} | {}_{0} \cdot \eta |^{2}$ η : physics processes leading to Lepton number violation. Standard interpretation : Only light Majorana v's lead to $0\nu\beta\beta$ $\Gamma_{0\nu} = {}_{0} | {}_{0} |^{2} {}_{\beta\beta}^{2}$

- ✓ Experimental 0vββ discovery demonstrates massive Majorana particles and Lepton number violation.
- Other mechanisms exist leading $0\nu\beta\beta$ in the same order as light ν exchange mechanism,
 - Heavy v exchange,
 - Mechanisms with RHC,
 - Majorons, etc.

Ονββ discovery from one nucleolus is not enough for full understanding.

- Model dependent $_{A}$ and $_{0v}$ (NME) complication
- \checkmark Full understanding requires 0vββ results in serval isotopes.
- \checkmark 0vββ is not just a neutrino mass experiment.

Detection Sensitivities

AFAD-2021

0vββ decay rates: Simple-mined

Matters with Bkg., ΔE , Exposure.

Experimental Sensitivity of $T_{1/2}$ ($0\nu\beta\beta$)

$$_{1/2}^{0\nu}(\exp) = (\ln 2) \quad -\varepsilon \frac{\cdot \operatorname{time}}{-\varepsilon}$$

Common strategies to increase sensitivity

- ✓ Increase : Large detector mass, Enriched ββ elements ← budget
- ✓ Increase 'time' : up to a few years

✓ Smaller ΔE : Better energy resolution ← detector tech. LT thermal calorimeters

- ✓ Bkg. : Minimize background events in ROI
 - Underground facility (w. controls on Rn, n, dust, long-lived cosmogenics)
 - Radio-assay equipment and protocols
 - Controls on natural occurring radioactive materials (U, Th, etc.)
 - In-situ bkg. identification
 - Alphas, gammas, $\beta\beta(2\nu)$, μ and n- induced, v-e scatterings
 - **\leftarrow** PSD, Heat/L or Charge/L detection, Veto, Shield, Topology, ΔE , Δt
 - Etc. LT thermal calorimeters

Experimental approaches for $0\nu\beta\beta$

0vββ Experiments

Methods	Isotopes	
Loaded Liquid Scintillators	¹³⁰ Te: SNO+ ¹³⁶ Xe: KamLAND-Zen	
Ge semiconductors	⁷⁶ Ge: GERDA Majorana Demonstrator LEGEND	
TPCs (liquid, gas)	¹³⁶ Xe: EXO200, nEXO NEXT PandaX-III	
Low-temperature thermal calorimeters	 ⁴⁸Ca: CANDLES ⁸²Se: CUPID-0 ¹⁰⁰Mo: AMoRE, CUPID-Mo ¹³⁰Te: CUORE 	
Tracking chambers	⁸² Se: SuperNEMO	
Inorganic scintillators	⁴⁸ Ca: CANDLES	

Low Temperature Detectors

"Calorimetric measurement of heat signals at mK temperatures"

Energy absorption → Temperature

Choice of thermometers for $0\nu\beta\beta$ searches

- Thermistors (NTD Ge) CUORE, CUPID
- TES (Transition Edge Sensor) Light detector
- MMC (Metallic Magnetic Calorimeter) AMoRE
- KID (Kinetic Inductance Device) CALDER
- etc.

Thermistors

• Doped semiconductors

- Neutron transmuted doped (NTD) Ge thermistors

- Ion implantation doped Si thermistors

- $: 1 \text{ M}\Omega \sim 100 \text{ M}\Omega$
- Readout: (cold) JFET
- High resolution + High linearity + Wide dynamic range + Absorber friendly
- Require very low bias current(sensitive to micro-phonics and electromagnetic interference), Slow response

Metallic Magnetic Calorimeter (MMC)

- Paramagnetic alloy in a magnetic field Au:Er(300-1000 ppm), Ag:Er(300-1000 ppm)
 → Magnetization variation with temperature
- Readout: SQUID
- High resolution + High linearity + Wide dynamic range + Absorber friendly + No bias heating + Relatively fast
- More wires & materials needed for SQUIDs and MMCs,

Sensor performance

✓ A test result with an MMC.

Resolution matters.

Simultaneous phonon-scintillation detection

✓ Scintillating crystal as target material
 → Active bkg. Rejection

✓ Many ββ nuclei test ✓ $Q_{\beta\beta} > 2.6$ MeV possible for Ca, Se, Mo → Low env. γ bkg.

CUORE history

CUORE

- Cryogenic Underground Observatory for Rare Events
- > Main objective: $0\nu\beta\beta$ in ¹³⁰Te
- > 988 TeO₂ crystals, 5x5x5 cm³ each
- > Total mass: 742 kg TeO₂ (natural Te)
- ¹³⁰Te mass: 206 kg
- Crystals operated as bolometers in a cryostat capable of reaching T < 10mK

Present limit: ¹³⁰Te $T^{0\nu} > 3.2 \times 10^{25}$ yr w. 90% CI $m_{\beta\beta} < 75-350$ meV

CUPID-0

CUPID: CUORE Upgrade with Particle IDentification

a rejection with light shape

CUPID-0: the first demonstrator

- ⁸²Se 0vββ decay Q-Value: 2998 keV
- 31 Ge slabs (Light Detector)
- Arranged in 5 towers -> (3.8x10²⁵ ⁸²Se nuclei)

- Assembled in an underground radon free clean-room @ LNGS
- Hosted in the same CUORE-0 dilution refrigerator (Hall A)

6

 $T_{1/2}^{2\nu} = [8.60 \pm 0.03 (\text{stat.}) \ ^{+0.17}_{-0.10} (\text{syst.})] \times 10^{19} \text{ yr}$

Jight signal shape depends on particle type

CUPID-0 upgrade: 2019

January 2019: stop data taking for a major detector upgrade:

- Remove the reflective foils
- Install a new clean copper shield
- · Install a muon veto

CUPID-Mo

First data from the CUPID-Mo neutrinoless double beta decay experiment

Benjamin Schmidt for the CUPID-Mo Collaboration

Now: accumulated > 1 kg*yr of physics data

 $T_{1/2}$ > 3*10²³ yr at 90% C.L with

~0.5 kg*yr exposure (~0.27 kg*yr of ¹⁰⁰Mo), 81% signal acceptance

AFAD-2021

Yong-Hamb Kim

The AMoRE Project

AMORE: 'Love' in Italian

AMORE "A cosmetic company in Korea" Their factory is located in Daejoen.

AMoRE: Advanced Mo-based Rare process Experiment

to search for neutrinoless double decay of ^{100}Mo using **cryogenic** $X^{100}MoO_4$ **detectors**

That's AMoRE for us!

Ø4cmx4cm CaMoO₄ crystal

AMoRE collaboration (since 2009)

AMoRE Progress

AFAD-2021

AMoRE

First Pilot result, + Upgrades

Bkg. from PCB and pin connectors

Bkg. improvement

Clean PCB (tested) no pin connectors

AFAD-2021

Yong-Hamb Kim

Upgrade: + Neutron shields

Yong-Hamb Kim

AMoRE-I detector

• 18 crystals

36 MMC channels CMOs ($^{48depl}Ca^{100}MoO_4$): 13 6 from Pilot (Fomos): 1.886 kg 7 new crystals (Fomos): 2.696 kg LMOs ($Li_2^{100}MoO_4$) 4 (NIIC) + 1 (CUP): 1.609 kg Total crystal mass 6.193 kg

 ~ 3.1 kg of $^{100}{\rm Mo}$

• Science run began Dec. 2020.

Schedule of the AMoRE project

- MMC technology for heat and light measurement
- Crystal: ⁴⁰Ca¹⁰⁰MoO₄, doubly enriched scintillating crystals (Pilot & I) For Phase II: X¹⁰⁰MoO₄ (X: Li, Na, or Pb)
- Zero background in ROI
- Location: Y2L (Pilot, I) and a new deeper place (Yemilab at Jeongsun)

	Phase I	Phase II
Mass	~6 kg	~40 (200) kg
MMC Channel	36	1000
Required background (ckky)	0.0015	0.0001
Sensitivity($T_{1/2}$) (year)	~10 ²⁵	$\sim 5 \times 10^{26}$
Sensitivity $(m_{\beta\beta})$ (meV)	120-200	17-29
Location	Y2L	Yemilab
Schedule	2020 ~	2022 (2023) ~

Yong-Hamb Kim

AMoRE Sensitivity

Summary

Current and future sensitivities

<M. Agostini 2019>

- $0\nu\beta\beta$ discovery is feasible in the following decade.
- NO does not mean no hope for $0\nu\beta\beta$ discovery. (Sensitivity should reach 20meV)
- It requires many experiments with various isotopes and different detection methods.
- 0νββ search is not just a v mass experiment but also studies firmamental understandings of particle physics.
- Amazing progress has been realized in many projects.

- AMoRE is a promising 0vββ experiment.
- Stay tuned to AMoRE