

Lithium vapou

Wakefield acceleration

Overview of CEPC Plasma Injector

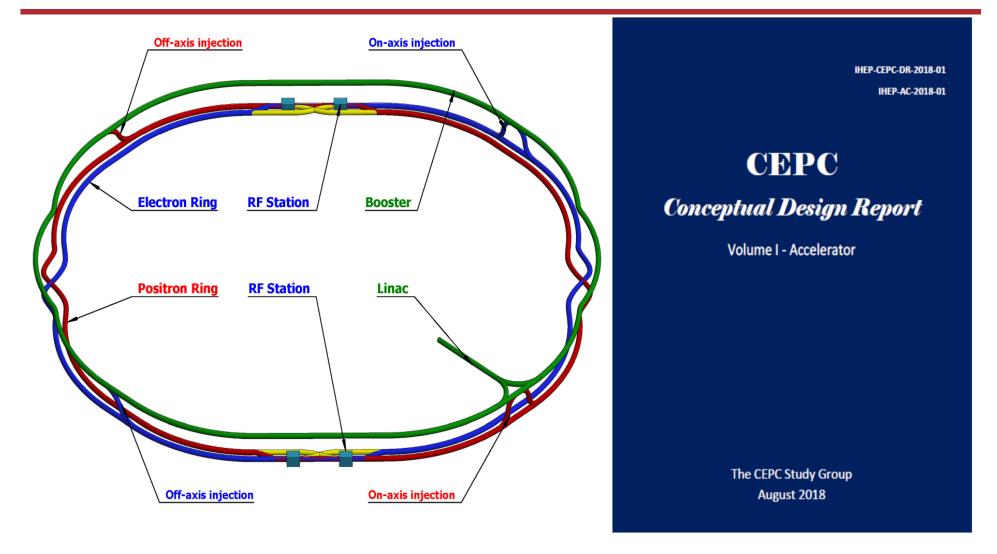
ion channel

Wei Lu @ Tsinghua University & Dazhang Li @ IHEP, CAS
On behalf the IHEP-THU-BNU AARG team
March 17, 2021

Working Group 4 on AFAD 2021

Outlines

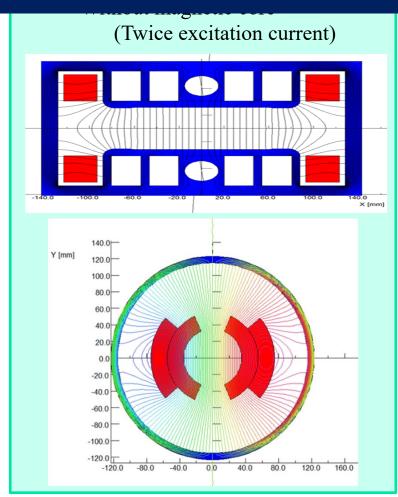
- Background: CEPC/CEPC plasma injector
- Preliminary design v2
- Current status: Simulations & experiments


Outlook: Future experiments

Circular Electron Positron Collider

CDR (Acc.) International Review @ 2018.6.28-6.30 & Final Released @ 2018.9.2

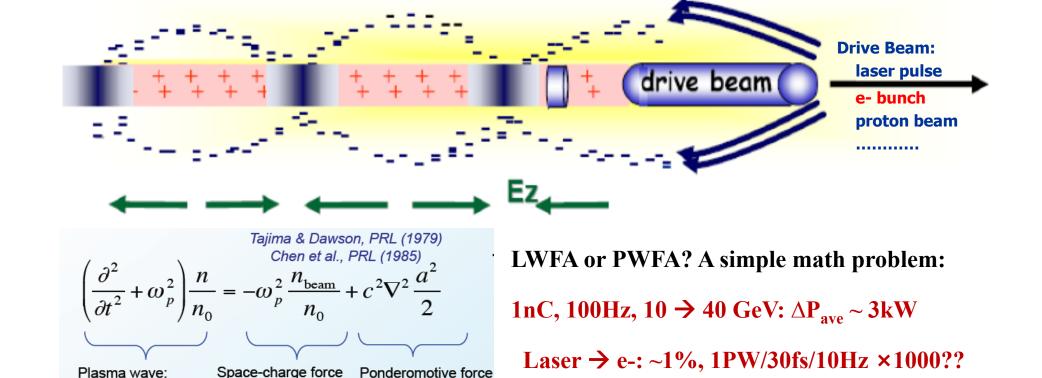
Low field Dipole Problem in Booster



Can we use a 10m scale plasma accelerator to boost the energy of the injector from 10GeV to about 45.5 GeV?

to design

- Field reproducibility
 <29Gs*0.05%=0.015Gs → how to measure
- The Earth field ~ 0.2 -0.5 Gs, the remnant field of silicon steel lamination ~ 4 -6 Gs.
- ➤ Thinking beyond CDR
 - Nominal field error: ~0.1%
 - Uniformity requirement: ~0.05%
 - Eddy current effect
 - Sextupole coils outside vacuum chamber



electron density perturbation

Plasma-based wakefield acceleration

Plasma wave excitation, 1~100GeV/m gradient

(radiation pressure)

 $a = \frac{eA}{mc^2} \propto \lambda I^{1/2}$

of particle beam

e- driver → e- trailer: 60% per stage!!

Footprints of CEPC Plasma Injector

- 2017.01: First discussion on CPI
- 2017.03: 1st THU-IHEP AAC group meeting
- 2018.08: CPI conceptual design V1.0
- 2018.11: CEPC CDR released, CPI mentioned as a backup injection method
- 2019.09: CPI conceptual design V2.0
- 2020.09: Linac requirement updated from CPI

A young and fast growing group

> THU team:

- ◆ Prof.: W. Lu, J. F. Hua,
- ◆ PhD: S. Y. Zhou, S. Liu, B. Peng, Y. P. Wu, Y. Ma, T. L. Zhang, H. Y. Xiao, Z. Song, Y. Fang, F. Yang.....

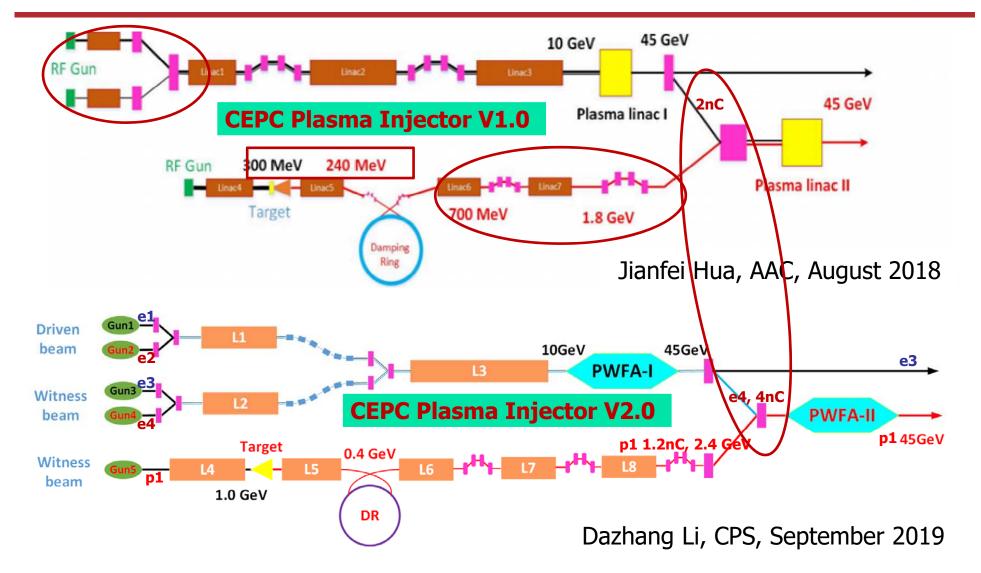
> THU team:

- ◆ Prof.: J. Gao, J. R. Zhang, Y. S. Huang
- ◆ Staff: D. Z. Li, M. Zeng, D. Wang, C. Meng, Y. W. Wang, X. H. Cui, G. Shu
- ♦ PhD: X. N. Wang, J. Wang

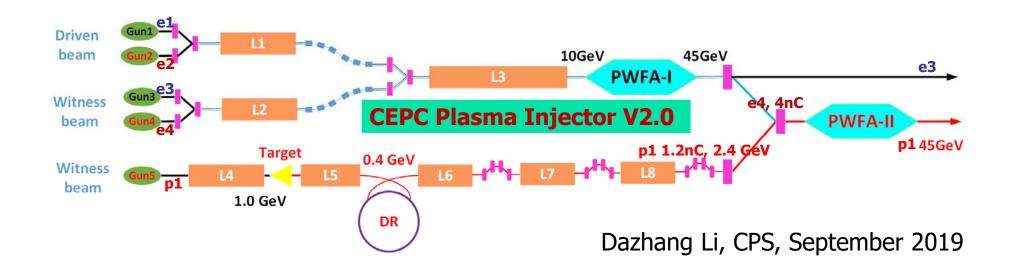
> BNU team:

Prof. W. M. An

Outlines


- **■** Background: CEPC/CEPC plasma injector
- Preliminary design v2
- **Current status: Simulations & experiments**
- Outlook: Future experiments

CPI conceptual Design V1.0→V2.0



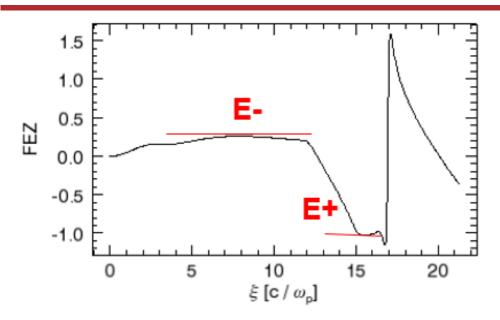
Requirement & Key issues of CPI

Booster Requirement			
Energy (GeV)	45.5		
Bunch Charge (nC)	0.78		
Bunch length(um)	<3000		
Energy Spread(%)	0.2		
ε _N (μm·rad)	<800		
Bunch Size(um)	<2000		

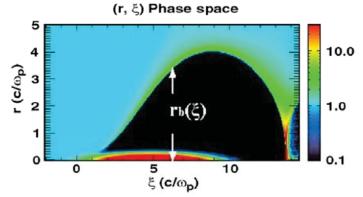
- ➤ Electron Acceleration → HTR
- ▶ Positron Acceleration → Stable mode
- Conventional Accelerator optimization
- Beam manipulations

Outlines

- **■** Background: CEPC/CEPC plasma injector
- Preliminary design v2
- **Current status: Simulations & experiments**


Outlook: Future experiments

What is High Transformer Ratio?


$$TR = E^{+}/E^{-}$$

$$TR = \frac{\overline{\gamma}_{trailer} - \gamma_{trailer_initial}}{\overline{\gamma}_{driver} - \gamma_{driver_initial}}$$

$$\eta = \frac{\sum_{i=1}^{n} E_{i} > E_{t}}{\sum_{j=1}^{n} E_{d} > E_{j}} (E_{i} - E_{trailer}) q_{i}$$

Nonlinear(Bubble) regime: nb/np>>1 or $\Lambda = n_b/n_p k_p^2 \sigma_r^2 > 1$

HIGH TRANSFORMER RATIO

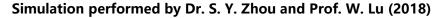
The equation of boundary:
$$r_b \frac{d^2 r_b}{d\xi^2} + 2 \left[\frac{dr_b}{d\xi} \right]^2 + 1 = \frac{4\lambda(\xi)}{r_b^2}$$

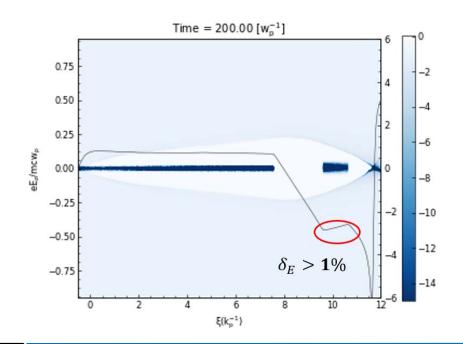
$$\psi(\mathbf{r}_{\perp}, \xi) \approx \frac{r_b^2(\xi)}{4} - \frac{r^2}{4}$$

$$E_z = \frac{\partial}{\partial \xi} \psi(\mathbf{r}_{\perp}, \xi) \simeq \frac{1}{2} r_b \frac{dr_b}{d\xi} \quad E_{\perp} = E_r - B_{\theta} = \frac{r}{2}$$

Lu W, Huang C, Zhou M, et al, PRL(2006)

For our case, we need $R \ge (45.5-10)/10=3.55$




HTR e- Acceleration--Baseline

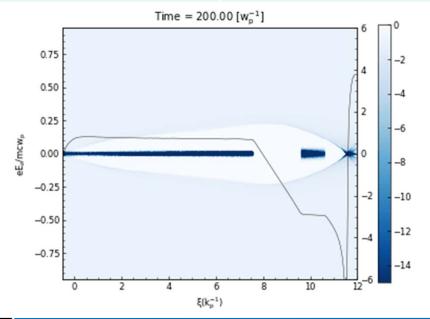
beam	Driver	Trailer
Driver energy $E(GeV)$	10	10
Nor. emittance $\epsilon_n(mm \ mrad)$	(head)≤50/≤500	≤100
Length(ps)	2	0.267
Spot size(um)	20	20
Charge(<u>nC</u>)	5.8	1
Beam distance(um)	149	

Density $n_0(cm^{-3})$	0.503×10^{1}	16
Trailer E (GeV)	45	
▼TR	3.5	>
Efficiency (%)	60	
Acc. gradient(GV/m)	2.9	
Acc. distance (m)	12	

- 1) Matched beam → Preserve the emittance
- 2) Ez⁻↑→ Trailer's Energy↑ to 45.5GeV
- 3) Trailer's Q $\downarrow \rightarrow$ Flatten Ez \rightarrow Energy spread \downarrow

Simulation performed by Tsinghua Team from 2017-2018

HTR e- Acceleration--Optimized

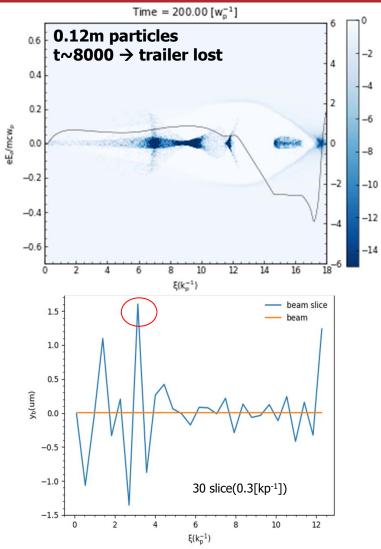


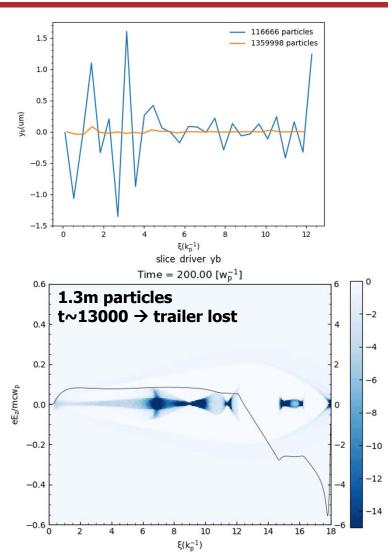
beam	Driver	Trailer
plasma density $n_p \left(\times 10^{16} cm^{-3} \right)$	0.50334	
Driver energy E (GeV)	10	10
Normalized emittance $\epsilon_n(mm\ mrad)$	50→20	100
Length (um)	600	77
(matched) Spot size(um)	20→3.87	20→8.65
Charge (nC)	5.8	1→0.84
Energy spread δ_E (%)	0	0
Beam distance (um)	14	19

Accelerating distance (m)	10.65
Driver energy $E(GeV)$	1.30
Trailer energy $E(GeV)$	45.5
Normalized emittance $\epsilon_n(mm \ mrad)$	98.44
Charge(nc)	0.84 (0.78)
Energy spread $\delta_E(\%)$	0.56
TR	~ 4
Efficiency (%) (driver → trailer)	59.1

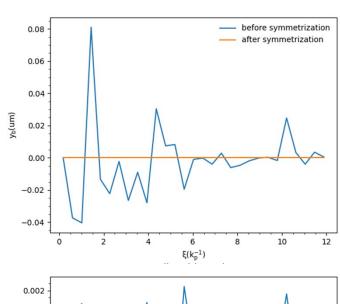
Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

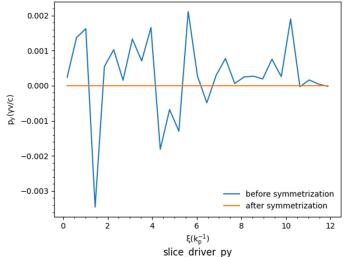
- > 10 GeV \rightarrow 45.5 GeV e- acc. (on paper) work
- **>** Much smaller $\sigma_{x,y}$ → Linac difficulty ↑
- > Trailer's charge close to minimum request
- Start-to-end & error analysis studies


Simulation performed by IHEP & BNU since 2019

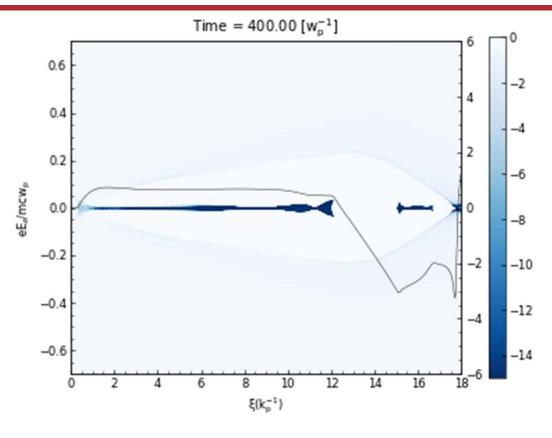

For a "real" linac generated beam

Big slice jitter → Hosing Instability


Particle # $\uparrow \rightarrow$ Slice jitter $\downarrow \rightarrow$ Hosing \downarrow

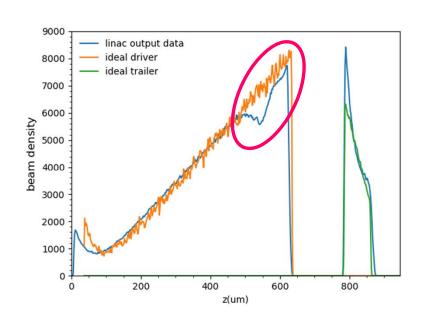


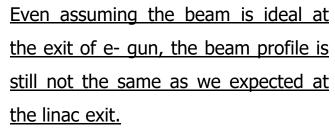
Assume the beam is symmetric



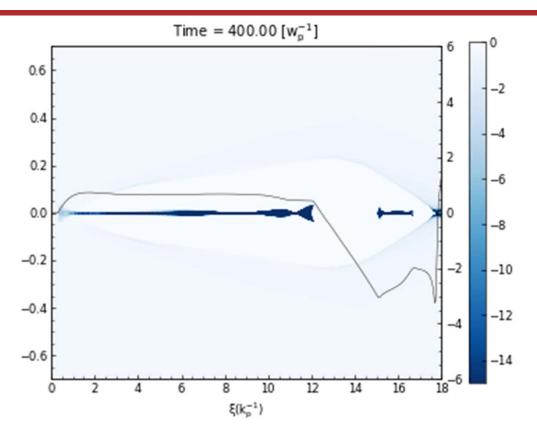
MAKE the beam initial $[x, y,px,py] \sim [0,0,0,0]$

	Symmetry beam	Ideal beam
Et	42.80 GeV	45.5 GeV
Qt	0.7909 nC	0.84 nC

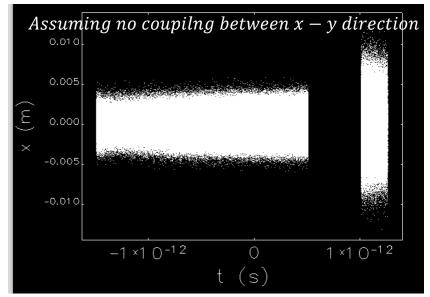

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

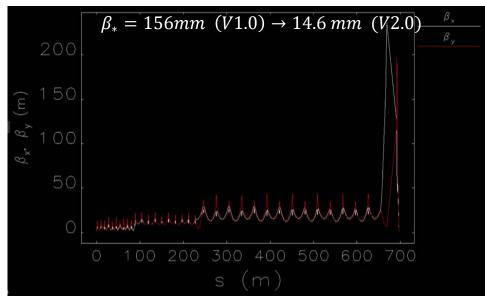


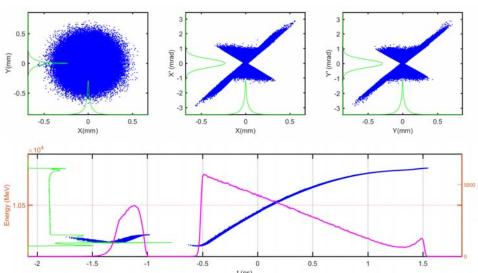
We need a "perfect" beam



NEED MORE OPTIMIZATION!!


	Symmetry beam	Ideal beam
Et	42.80 GeV	45.5 GeV
Qt	0.7909 nC	0.84 nC

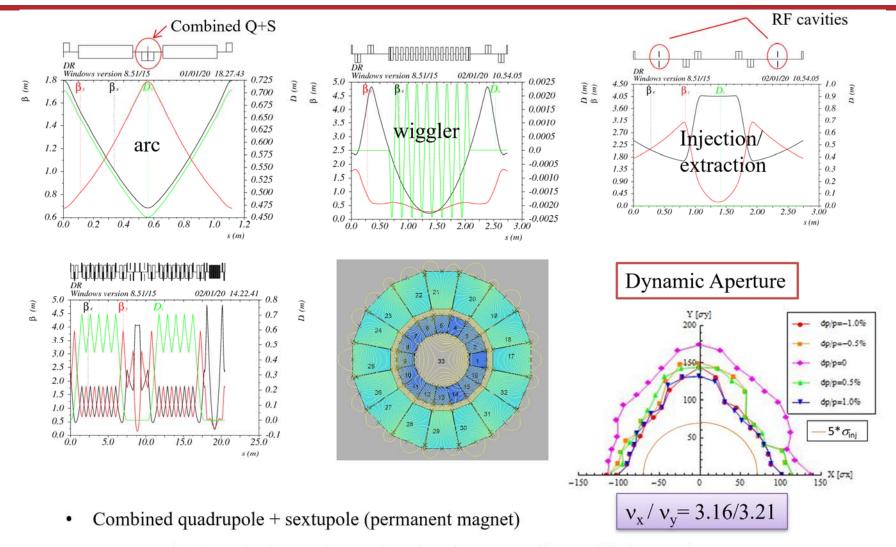



Linac optimization for ideal beams

L-band photocathode rf gun under design.

Finished the preliminary linac design and the end-to-end simulation (e- gun \rightarrow FFS). Beam distribution improved but can not meet the requirements yet.

NEED MORE OPTIMIZATIONS

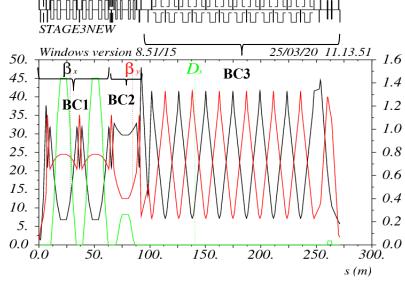

By Dr. Cai Meng & Dou Wang from IHEP (2020)

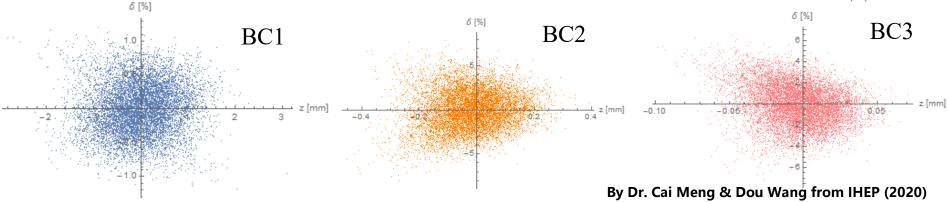
Damping Ring Optics Design V3.0

Superconducting wiggler → shorter damping time & smaller equilibrium emittance

By Dr. Cai Meng & Dou Wang from IHEP (2020)

3-Stage Bunch Compressor




	BCI	BCII	BCIII
Initial energy (MeV)	400	400.1	405
δinj (%)	0.05	0.367	2.17
Initial oz (mm)	4.4	600	100
f_{RF} (GHz)	2.860	5.712	5.712
Voltage(GV)	0.0056	0.12	4.18
Gradient (MV/m)	20	40	40
L(m)	0.28	3	104
$\phi_{\!\scriptscriptstyle RF}$ (degree)	89	88	61.5
R ₅₆ (mm)	1200	27.6	5.5
Final energy(MeV)	400.1	405	2400
δext (%)	0.367	2.17	1.83
final σz (um)	600	100	20

• Bunch length: $4.4 \text{mm} \rightarrow 20 \text{um}$

• Energy spread: $0.054\% \rightarrow 1.8\%$

Perturb	ation	Limitation	limiting factor
beam charge	Driver	[-1%, 0.8%]	$\mathcal{E}_t \ \delta_E$
	Trailer	[-0.24%, 2%]	\mathcal{E}_t
hoom longth	Driver	±1%	\mathcal{E}_t
beam length	Trailer	±5%	\mathcal{E}_t
initial energy	driver	[-1%, 0.38%]	E_t
	trailer	[-1.75%, 0.37%]	\mathcal{E}_t
initial energy spread		3.9%	$\mathcal{E}_t \ \delta_E$
Spot size	driver	[-40%, 2%]	\mathcal{E}_t
	trailer	[8%, 8%]	E_t

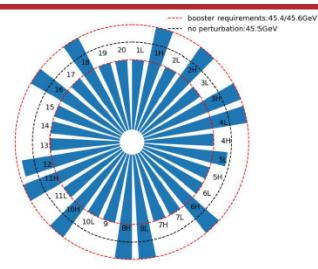
On going process!!

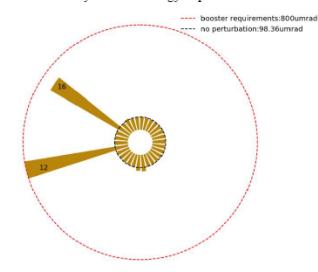
Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

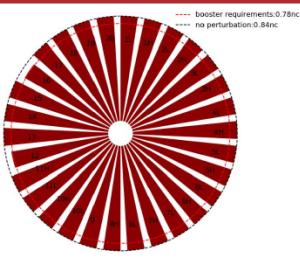
Error analysis based on ideal beams

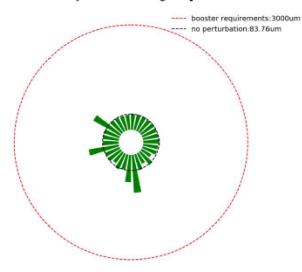
P	erturbation		Limitation	limiting factor	Linac simu. data
	Transverse	position	±2.38um	Q_{t} $\pmb{arepsilon}_{N}$	Same level
Centroid offset	Transverse	Driver	On going	\mathcal{E}_t	35nrad/69nrad
velocity	Trailer	On going	E_t	Joinau/Obinau	
Slice jitter	Transverse	Driver	On going	E_t	Need more
Since jitter	position	Trailer	±3.7um	E_t	studies
Beam distance		[-1um, 0.25um]	E_t	~3um (10fs)	
Plasma density		±0.3%	E_t		

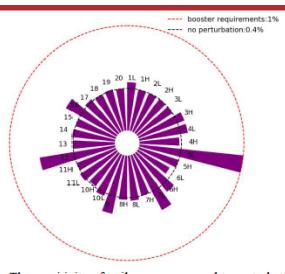
On going process!!

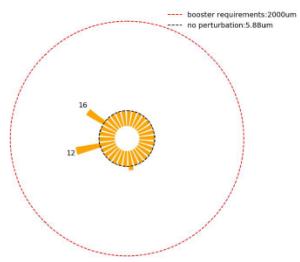

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)


Overall Error Analysis Results




The sensitivity of trailer energy to perturbations

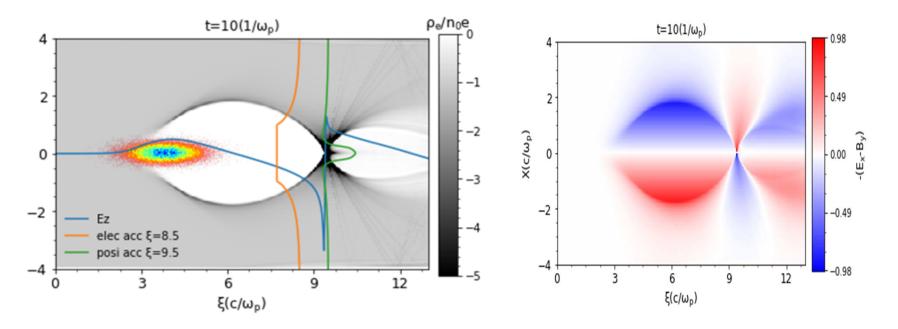

The sensitivity of trailer emittance to perturbations


The sensitivity of trailer charge to perturbations

The sensitivity of trailer length to perturbations

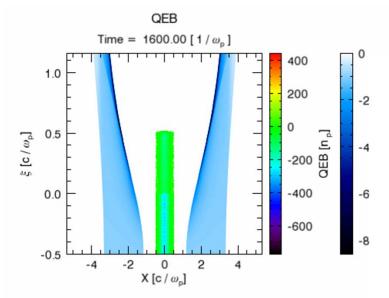
The sensitivity of trailer energy spread to perturbations

The sensitivity of trailer RMS spot size to perturbations

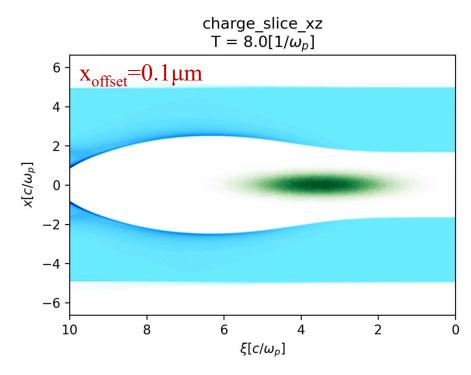

Basic ideas for improving e+ acc.

A "perfect" wakefield means:

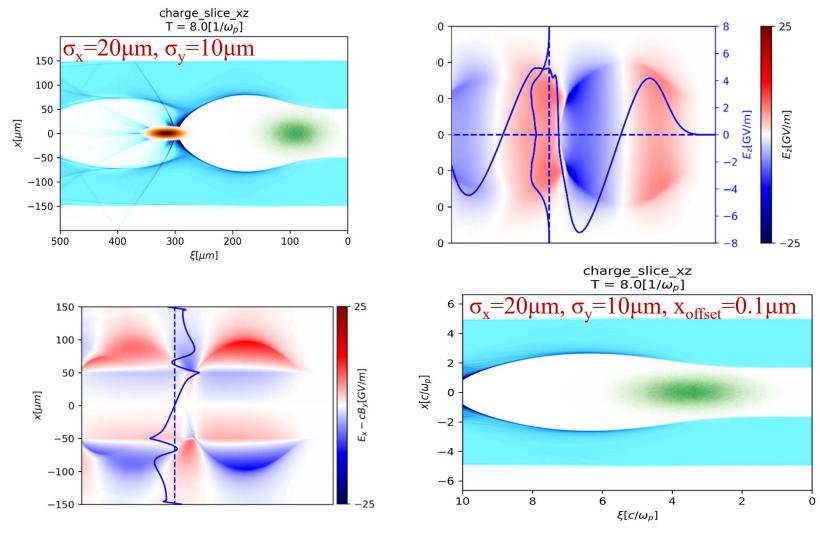
- > Flat longitudinal wakefield, particles at different position experience same Ez
- > Transverse wakefield can provide focusing forces to the accelerated particles



So, the blowout wakefield in uniform plasmas is quite fit for e- acceleration, while unfit for e+ acceleration

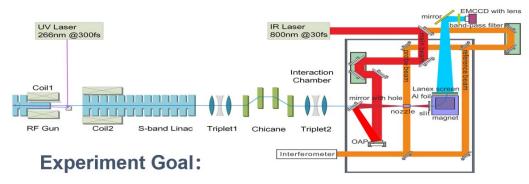

Baseline method → not very practical

- Low energy spread ~0.5%
- Small emittance growth
- Need e- driver, e+ trailer and plasma channel coaxial, not very practical

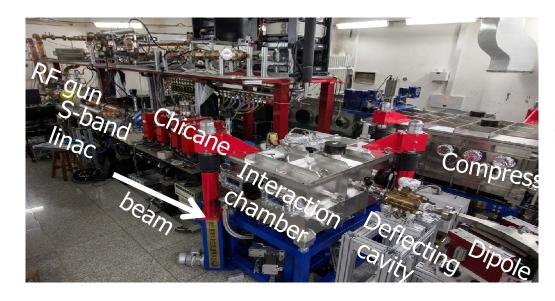


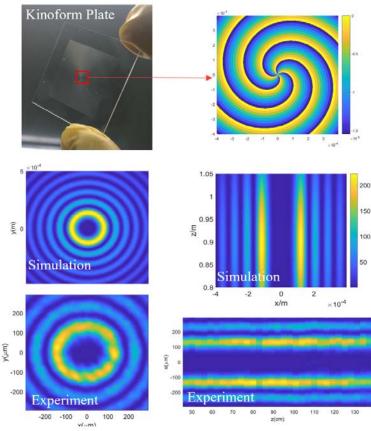
Simulation performed by THU team in 2018, based on the hollow channel idea [S. Gessner et al., Nat. Commun. 7, 11785 (2016)]

Modified design → asymmetry driver



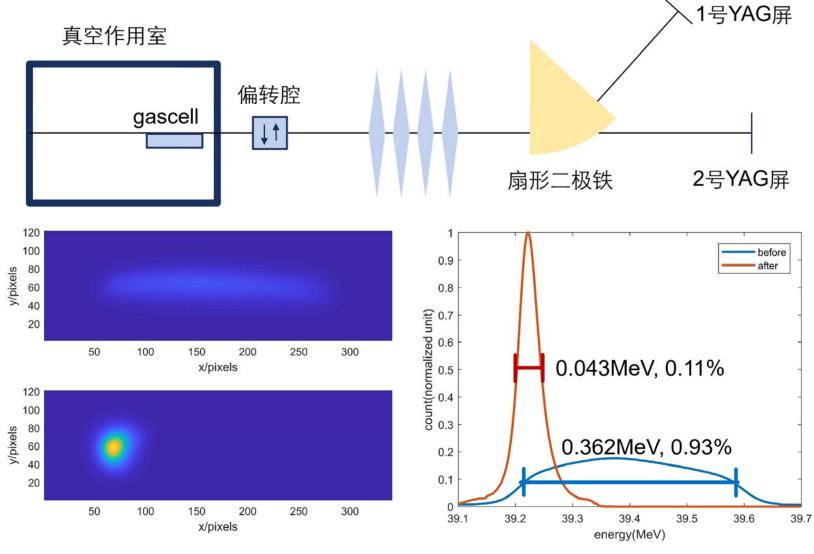
S. Y. Zhou, W. Lu, et al., arXiv: 2012.06095v1, Submitted to PRL (2020.12)




Plasma dechirper experiment @ THU

- 1. Decrease the energy spread from 1% to 0.1%
- 2. Study Hollow channel impact on beam quality

Planned to finish it before February, but delayed by COVID-19.


Re-started in Oct. 2020

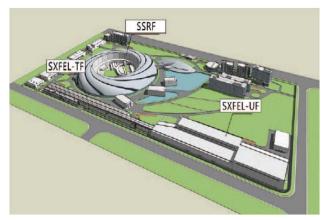
Slides from Dr. Shuang Liu (2020)

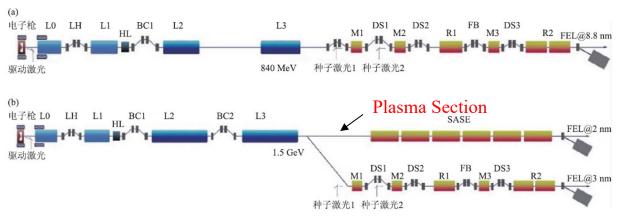
Energy spread from 1% to 0.1%

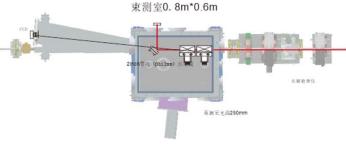
Slides from Dr. Shuang Liu (2020)

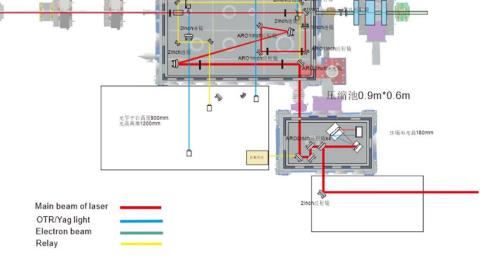
Outlines

- **■** Background: CEPC/CEPC plasma injector
- Preliminary design v2
- **Current status: Simulations & experiments**


Outlook: Future experiments



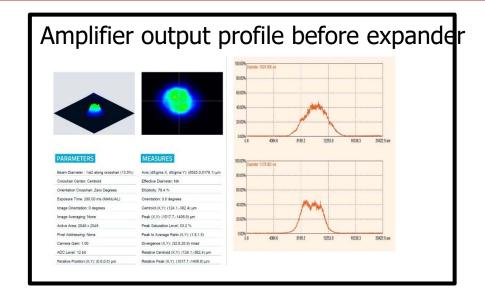

Platform at SXFEL



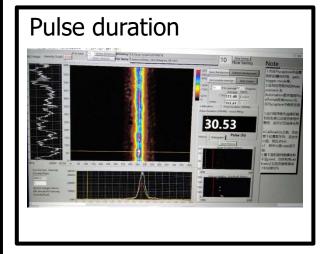
Aim:

Obtain a stable positively-chirped beam with few percent energy spread, and post-processing the beam using a passive dechirper, to decrease the energy spread

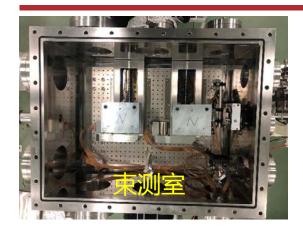
■ 作用室1.6m*1m

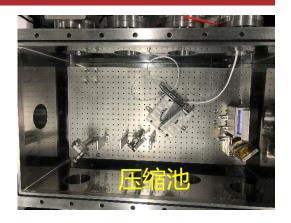


Laser system upgrade (finished)



Pulse compressor efficiency: 72%


Slides from Dr. Bo Peng (2020)


Ready and wait for the beamtime

Slides from Dr. Bo Peng (2020)

Proposed experiments on FACET-II

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Two Stage Cascaded High-Transformer-Ratio Plasma Wakefield Accelerator

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Mark Hogan, Chan Joshi, Jie Gao
Institution:	Tsinghua University, SLAC, IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li
Collaborating Institutions:	
Funding Source (optional)	NSFC, DOE
Approximate Duration:	3-5years

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Stable Mode in Hollow Channel

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Chan Joshi, Mark Hogan, Jie Gao
Institution:	Tsinghua/UCLA/SLAC/IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li,
Collaborating Institutions:	
Funding Source (optional)	NSFC、DOE
Approximate Duration:	3 years

Hello Wei,

E-mail from Prof. Mark Hogan, head of plasma acc. group in SLAC

So good to hear from you! I very much agree that these are important ideas that can be very impactful for our field. I want to do everything we can to ensure that the proposals are highly reviewed and that we develop a plan that ensures the best chance of success.

Two proposals has been reviewed last year, and both got "good" remarks

Summary and prospects

HTR e- acceleration

- Start-to-end simulation performed, linac and CPI requirement updated
- Detailed error analysis is ongoing, multi-parameter effects are under consideration
- Linac can not meet the CPI requirement yet, both sides work on it
- For plasma acceleration, increase the plasma wavelength and lower the TR will be the effective methods

e+ acceleration

- New methods are studied
- Fix the baseline parameters at the end of 2020
- · EA and related linac design will start as soon as baseline fixed
- **■** Experiments affected by COVID-19, but much better now
 - Test facility for PWFA is crucial and under consideration
- Feasibility report (2022-2023) → TDR: it's a long way to go

