GEM Detector Development for high rate detectors for MuCh in CBM experiment @FAIR

Anand Kumar Dubey (VECC, Kolkata)

(For MUCH India Collaboration)

Compressed Baryonic Matter Exp.(CBM) @ FAIR

Fixed target experiment

Beam Energy

@SIS100

Beam energy: 2-14A GeV for heavy ions and 2-29A GeV for proton beams

@SIS300

Beam energy: 2-35A GeV for heavy ions and 2-89A GeV

for proton beams

→Interaction rates will go up to 10 MHz

Physics goals :

- Designed to explore QCD phase diagram at moderate temperature and high net baryon density : Eqn of state, Deconfinement phase transition, etc.

- Measure rare diagnostic probes :

multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics

Ref: Eur. Phys. J. A, 53 (3): 60, 2017

The Muon Chamber (MuCh) System @ CBM

→ The main job of MuCh is to measure dimuon signals arising from the decay of LMVM and J/psi generated in nucleus-nucleus collisions.
→ The alternating detector stations will carry out the task of muon track reconstruction.

Challenges in Muon detection @CBM

Main issues:

- High collision rates ~ 10 MHz
- The first plane(s) have a high density of tracks High granularity ~ average hit rate is about 0.4 hit/cm²
- Should be radiation resistant –

high neutron dose ~10¹³ n.eq./sq.cm/year

- Large area detector with modular arrangement
- Data to be readout in a self triggered mode
 - -- a must for all CBM detectors.
 - -- and event reconstructed offline by grouping the timestamps of the detector hits.

R&D with small size prototypes

Building small and medium size triple GEM prototypes at VECC

Results published in 2014 JINST 9 C06004

31 cm x 31 cm triple GEM module

Results from Lab tests at VECC (using conventional electronics)

gap config : 3/1/1/1.5

Test with Cosmic muons in VECC lab

Test Results(10 cm x 10 cm) self triggered mode nXYTER electronics, (H4 beamline at SPS),

-- Ar/CO(70/30) has been the gas mixture.

A.K. Dubey, et.al. NIMA 755(2014), 62-68

Building and testing Real-size prototypes

Assembly of Real-size Chamber at VECC

Beamtest of real size prototype at JESSICA@COSY, Juelich (2014)

BeamTest Results First Real-size Prototype

(self triggered mode)

Optocoupler Design for GEM

Ref: A. Kumar, et.al., Nucl. Inst. and Meth. A 958, 162905 (2020)

Testing Module at GSI With Radioactive Source

Alumina sheets for cooling the ceramic divider

Commissioning GEM detector modules in mini-CBM at SIS18 beamline at GSI

Picture of mCBM Setup

mCBM setup as of Dec. 2019, located at the SIS18 facility of GSI

Participation in mini CBM experiment \rightarrow FAIR Phase-0 program

Picture of mMuCh Setup

Downstream view

Z-position of MUCH GEM1 :~84 cm GEM2 :~106 cm

-> Readout channels per module = ~2200 -> Area = ~2000 cm

Minimum pad size = ~4 mm Maximum pad size = ~17 mm

GEM1 acceptance : 17 FEBs GEM2 acceptance : 10 FEBs

LVDB

mCBM DAQ

STS/MuCh-XYTER

- -> Self-triggered electronics
- -> 128 channels + 2 test channels
- -> Can handle average hit rate ~250 kHz/channel
- -> Dynamic range = 100 fC
- -> Provides both timing and ADC information
- -> 5 bit flash ADC
- -> Time resolution ~4-5 ns
- -> Heat generated = ~2-3 W / FEB

One module require 18 FEBs Heat generated for one module = 2.5 x 18 = 45 W

Front-End-Board (FEB)

Data recorded in Time slices (TS), 1TS ~ 10ms

Analysis and Results

Ar + Au at 1.7 A GeV, Nov./Dec. 2019

Digi correlation in TS

Time-Offset and Correction

Event Building

With minimum **TOF** and **T0** trigger condition

For the current analysis

Algorithm:

Fixed time window = 200 ns Minimum 6 TOF + 1 T0 Digi

Clustering and hit reconstruction

Pulse height spectra and Relative gain

Spatial Correlation Ar + Au at 1.7 AGeV, Nov./Dec. 2019

Ref: A. Kumar, et.al., JINST Communicated

SUMMARY :

1. Have built and tested several prototypes

-- 10 cm x 10 cm , 31 cm x 31 cm and real size prototypes, tests using single particle beams at SIS18, COSY, CERN and mCBM
-- all test using self-triggered electronics
-- validation of a high charged particle detection efficiency(>90%)

using self-triggered approach.

2. High rate test using single particle beams on real-size prototype– showed a stable behaviour in the range measured upto 2.8 MHz/cm2

3. Real-size GEM modules coupled to STS/MUCH XYTER commissioned and tested in mCBM expt. as part of phase-0 experiment.

4. Optocoupler based biasing adopted for mMUCH modules to power the GEM segments.

5. Obtained reasonable spill structures, time correlation spectra.

6. A correlated response of GEM modules with different subsystems observed in the free-streaming data.

7. Further test of detectors at high intensity to be carried out in mCBM

Thank You

Backups

