
Task 3 status: CERN
The 3rd CREMLINplus WP5 general meeting

Plácido Fernández Declara, André Sailer
February 17, 2021

CERN

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 1

TPC related tools for Aurora integration

• TPC geometry
https://github.com/iLCSoft/lcgeo/blob/master/detector/tracker/TPC10_geo.cpp

• Geant4 sensitive detector
https://github.com/iLCSoft/lcgeo/blob/master/plugins/TPCSDAction.cpp

• Digitisation: parametrised resolutions
https://github.com/iLCSoft/MarlinTrkProcessors/blob/master/source/Digitisers/src/DDTPCDigiProcessor.cc

• Pattern recognition and track reconstruction
https://github.com/iLCSoft/Clupatra

• TPC Reconstruction Steering File
https://gitlab.cern.ch/sailer/SCT_TPCReco

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 2

https://github.com/iLCSoft/lcgeo/blob/master/detector/tracker/TPC10_geo.cpp
https://github.com/iLCSoft/lcgeo/blob/master/plugins/TPCSDAction.cpp
https://github.com/iLCSoft/MarlinTrkProcessors/blob/master/source/Digitisers/src/DDTPCDigiProcessor.cc
https://github.com/iLCSoft/Clupatra
https://gitlab.cern.ch/sailer/SCT_TPCReco

k4MarlinWrapper

• k4MarlinWrapper brings Marlin
functionality to Gaudi
framework, smoothly.

• It creates interfaces (wraps)
around Marlin Processors,
encapsulating them in Gaudi
Algorithms.

• Current Marlin source code is
kept intact, and it is just called
on demand from the Gaudi
Framework.

Marlin Gaudi

Language C++ C++
Working unit Processor Algorithm
Config. language XML Python
Set-up function init initialize
Working function process execute
Wrap-up function end finalize
Transient Data Format LCIO EDM4hep

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 3

k4MarlinWrapper development I

• Bugs were fixed, a manual (README.md) was included with instructions to compile,
configure, run and test.

• Updated and modernization of the code base.
• Running examples are included as tests.
• A recipe to build it with Spack is also part of the k4-spack repo.
• It was included as part of Key4hep, moving there the repo1.
• CI is now included with GitHub Actions, checking syntax (clang-format), build and
running tests to keep resilience.

1https://github.com/key4hep/

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 4

https://github.com/key4hep/

k4MarlinWrapper development II

• Project was integrated into Key4hep, renamed from ”Gaudi-Marlin-Processors” (GMP)
to k4MarlinWrapper.

• Gaudi integration was updated to last Gaudi version 35
• Modern and more standard Cmake

• Spack recipe for it was created. Built and released as part of the Key4hep view.2

• spack install key4hep-stack

2https://key4hep.github.io/key4hep-doc/spack-build-instructions/README.html

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 5

https://key4hep.github.io/key4hep-doc/spack-build-instructions/README.html

Dependencies

k4MarlinWrapper can be built against the Key4hep CVMFS view. Main dependencies:

• Gaudi: to wrap Marlin processors and run the algorithms.
• Marlin: to run the underlying processors.

• It will eventually disappear when only Gaudi Algorithms are used.

• LCIO: Event Data Model input/output used by Marlin.
• EDM4hep: Event Data Model input/output to be used across the framework.

• Other data event models could be integrated.

• k4FWCore, k4LCIOReader, podio: leveraging synergies between other Key4hep
packages and related.

Other general dependencies:

• ROOT, Boost

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 6

Configuration and running

• Config and running done via
Python file as with the Gaudi
Framework.

• Processor parameters defined
for each instance, and list
algorithms configured.

• On algorithm initialization of
Marlin Processors, the
MARLIN_DLL environment
variable is used to load the
necessary libraries.

MyTPCDigiProcessor = MarlinProcessorWrapper("MyTPCDigiProcessor")

MyTPCDigiProcessor.OutputLevel = INFO

MyTPCDigiProcessor.ProcessorType = "DDTPCDigiProcessor"

MyTPCDigiProcessor.Parameters = [

"DiffusionCoeffRPhi", "0.025", END_TAG,

"DiffusionCoeffZ", "0.08", END_TAG,

"DoubleHitResolutionRPhi", "2", END_TAG,

"DoubleHitResolutionZ", "5", END_TAG,

"HitSortingBinningRPhi", "2", END_TAG,

"HitSortingBinningZ", "5", END_TAG,

"MaxClusterSizeForMerge", "3", END_TAG,

"N_eff", "22", END_TAG,

...

]

algList.append(MyTPCDigiProcessor)

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 7

XML to Python converter

• A converter from XML steering file to Python options file is available as a Python
script.

• It produces the list of Gaudi algorithms, including optional Processors.
• These are left as commented algorithms that need to be manually uncommented by the
user.

• A comment is also included to indicate its configuration.
• # algList.append(MyFastJetProcessor) # Config.OverlayNotFalse

• It now includes Constants parsing from the XML
• It lists the CONSTANTS = to be modified by the user
• These are replaced in the processors with String substitution:
"%(DD4hepXMLFile_subPath)s" % CONSTANTS

• It now supports lists of arguments in the constants as well

• Marlin -x can create a steering file containing all the parameters for the known
processors. This can be converted to python.

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 8

EDM4hep to LCIO conversion

• Conversion between EDM4hep and LCIO
needed to run with Marlin Processors

• LCIO to EDM4hep conversion available
here:
https://github.com/key4hep/k4LCIOReader

• Uses k4FWCore to read the input
collections indicated in the options file

• https://github.com/key4hep/k4FWCore

from Configurables import k4DataSvc, ToolSvc,

MarlinProcessorWrapper, EDM4hep2LcioTool

theFile= 'edminput.root'

evtsvc = k4DataSvc('EventDataSvc')

evtsvc.input = theFile

from Configurables import PodioInput

inp = PodioInput('InputReader')

inp.collections = [

'ParticleIDs',

'ReconstructedParticles',

'EFlowTrack'

]

inp.OutputLevel = DEBUG

algList.append(inp)

ToolSvc.LogLevel = DEBUG

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 9

EDM4hep to LCIO conversion

• Converter implemented in k4MarlinWrapper as a Gaudi Tool
• Configured in the options file indicating which processor needs to use the Tool to
convert the EDM4hep event to LCIO format

• Events are read through the DataHandle from k4FWCore; these are converted and
registered in the Transient Event Store (TES) to make it available to the framework.

• Aurora uses SCT-EDM, which could be integrated.
• What about the SCT-EDM? Can this be made EDM4hep compatible?

MyFastJetProcessor = MarlinProcessorWrapper("MyFastJetProcessor")

...

MyFastJetProcessor.Conversion = [

type EDM4hep Collection LCIO Collection

"edm4hep::TrackCollection", "EFlowTrack", "Tracks",

"edm4hep::ReconstructedParticleCollection", "ReconstructedParticles", "PFOCollection"

]

MyFastJetProcessor.addTool(EDM4hep2LcioTool())

...

algList.append(MyFastJetProcessor)

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 10

Testing

Added testing with ctest:

• Simple tests that run Marlin Processors, with and without hits.
• Test that generates an input file with ddsim, with actual hits.

ddsim \

--steeringFile $ILCSOFT/ClicPerformance/HEAD/clicConfig/clic_steer.py \

--inputFiles $ILCSOFT/ClicPerformance/HEAD/Tests/yyxyev_000.stdhep -N 4 \

--compactFile $ILCSOFT/lcgeo/HEAD/CLIC/compact/CLIC_o3_v14/CLIC_o3_v14.xml \

--outputFile $GMP_tests_DIR/inputFiles/testSimulation.slcio

• Full CLIC reconstruction is used as test for more complex processors.
• Output checks for regex with INFO Application Manager Terminated successfully

• Test to check the XML to Python converter works correctly, with various corner cases.
• Test for the converters between EDM4hep and LCIO, in-memory.

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 11

Geometry detector file (I)

TPC geometry, Geant4 sensitive detector, digitisation, pattern recognition & track
reconstruction: all pieces build on each other.

• The gas volume is separated into cylinder surfaces, to force Geant4 to make a step.
• This in turn produces an energy deposit and hit

• The digitiser gets the hits produced by the simulation, and the geometry information
that is contained in the TPC driver

• Reconstruction uses the surfaces that the TPC driver defines

To run simulation and reconstruction for SCTAU using lcgeo and iLCSoft, add an XML
based on the lcgeo TPC driver to the SCT detector.

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 12

Geometry detector file (II)

Creating the geometry file:

• Based on sctau_detector_geoinitialize.xml3

• Missing materials were added in material_mixture.xml

• Needed constants were added from a mix of sources:
• lcgeo/ILD/compact/ILD_common_v01/basic_defs.xml

• lcgeo/ILD/compact/ILD_common_v01/top_defs_common_v01.xml

• lcgeo/ILD/compact/ILD_common_v01/envelope_defs.xml

• lcgeo/ILD/compact/ILD_common_v02/top_defs_ILD_l5_v02.xml

• DD4hep/DDDetectors/compact/detector_types.xml

3https://git.inp.nsk.su/sctau/aurora/-/blob/master/DetectorDescription/DetBase/xml/sctau_detector_

geoinitialize.xml

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 13

https://git.inp.nsk.su/sctau/aurora/-/blob/master/DetectorDescription/DetBase/xml/sctau_detector_geoinitialize.xml
https://git.inp.nsk.su/sctau/aurora/-/blob/master/DetectorDescription/DetBase/xml/sctau_detector_geoinitialize.xml

Geometry detector file (III)

• All detectors are added:
• TPC is replaced by

1 <detectors>

2 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/BeamPipeGeo/beamPipeGeom_def.xml"/>

3 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/FARICHGeo/sctau_FarichPID.xml"/>

4 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/BarrelCrystalCaloGeo/BarrelCrystalCalo.xml"/>

5 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/EndcapCrystalCaloGeo/EndcapCrystalCalo.xml"/>

6 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/CoilGeo/CoilGeom_def.xml"/>

7 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/MuonSystemGeo/MuonSystem_def.xml"/>

8 <include ref=".../Aurora/0.2.4/InstallArea/x86_64-slc7-gcc9-opt/XML/DriftChamberGeo/DriftChamberGeom_def.xml"/>

9 <include ref="my_tpc10_01.xml"/>

10 </detectors>

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 14

TPC (I)

A TPC geometry file is generated 4:

• It defines the readouts and limits
• The TPC detector is described

• Dimensions are adapted to match SCTAU’s TPC
• The necessary constants are filled for the innerWall, the outerWall and the readout

• Different things need to be adapted:
• The composition and thickness of the innerWall and outerWall is still defined as in ILD

4https://git.inp.nsk.su/plfernan/geom_tpc_aurora

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 15

https://git.inp.nsk.su/plfernan/geom_tpc_aurora

TPC (II)

• Hits can be visualized by
exporting in SLCIO format

• ddsim --compactFile

my_sctau_det_geo_2.xml -N

10 -G

--outputFile=hits.slcio

--part.userParticleHandler=''

--gun.isotrop=true

--gun.energy "100*MeV"

--steeringFile=steering.py

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 16

Integrating into Aurora

• lcgeo 5 available in Proxima, through Ceph.
• CVMFS could be used to run and compile the different parts.
• A new package for Aurora is in development which now includes the TPC geometry.
• This package will use the TPC Driver from lcgeo

5https://github.com/iLCSoft/lcgeo

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 17

https://github.com/iLCSoft/lcgeo

SCTAU reconstruction

k4MarlinWrapper successfully computes the full CLIC reconstruction:

• The provided converter can translate to Python Gaudi steering file.
• Algorithms for digitisers, reconstruction, pattern recognition, etc can be included into
this sequence.

• The converter adds all algorithms to the list; leaves the configurable ones
commented

• Integration with Aurora as an external package:
• Converters between event data models already in place.
• Marlin processors can be used as part of the framework through it.
• This would allow to use TPC digitiser, Clupatra (pattern recognition), track reconstruction
& fitting, and the Overlay for background.

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 18

Future directions

• We can instantiate the geometry with ctaurun

• Still need to enable the TPCSD
• Then run digitisers, pattern recognition and reconstruction

• The Marlin file for reconstruction can be converted with the k4MarlinWrapper script
• Adapters for Event Data Model

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 19

Conclusions

• Main achievements
• Simulation of the lcgeo::TPC in the SCT detector with ddsim
• Developments for the k4MarlinWrapper to run the processors inside Gaudi, including on
the fly conversion of event data

• The objectives for the coming year
• Fully integrate simulation into the Aurora framework
• Add the reconstruction for the TPC

• Reinforced collaboration
• Closer collaboration on core software with BINP inside the Key4hep activities including
adption of EDM4hep, Gaudi v35, spack based installations

• Milestones and Deliverables
• Month 18: Develop software for design of SCT detector

February 17, 2021 Task 3 status: CERN - Plácido Fernández Declara, André Sailer 20

