for Large-scale Research Infrastructures

SCTF FARICH simulation and prototyping

Alexander Barnyakov¹, Victor Bobrovnikov¹, Alexander Katcin¹, Sergey Kononov¹, Nikolay Podgornov¹, Alexander Daniluyk², Anton Shalygin², Michael Traxler³, Hasim Kayan³

¹ Budker Institute of Nuclear Physics & Novosibirsk State University , Novosibirsk, Russia
² Boreskov Institute of Catalysis, Novosibirsk, Russia
³ GSI/FAIR, Darmstadt, Germany

The 3rd CREMLINplus WP5 general meeting 18 February 2021

Focusing Aerogel RICH (FARICH)

Focusing aerogel improves proximity focusing design by reducing the contribution of radiator thickness into the Cherenkov angle resolution

T.lijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70

First sample of 4-layer aerogel

FARICH for Super Charm-Tau Factory

- Proximity focusing RICH
- 4-layer or gradient aerogel radiator $n_{max} = 1.05 (1.07?)$, thickness 35 mm
- 21 m² total photon detector area
 - SiPMs in barrel (16 m²)
 - MCP PMTs in endcaps (5 m²)
- ~10⁶ pixels with 4 mm pitch

PDPC-FARICH beam test results

Ring distribution on radius

A.Yu. Barnyakov, et al., NIM A 732 (2013) 352

π/Κ: 7.6σ @ 4 GeV/c

μ/π: **5.3**σ @ 1 GeV/c

SCTF FARICH simulation

Standalone Geant4 simulation of a simple proximity RICH geometry

Described effects:

- Multiple Coulomb scattering
- Cherenkov emission
- Aerogel chromatic dispersion
- Rayleigh light scattering in aerogel
- Light absorption in aerogel
- Photon detection efficiency (producer's datasheet)
- PD pixel size (no crosstalks)
- Ideal discriminator efficiency

SCTF FARICH simulated configuration

Photon detector

- ON Semiconductor (SensL) ArrayJ-30020-64P-PCB
- Pixel size 3.16×3.16 mm²
- Pixel pitch 3.36 mm
- $U_{bias} = 2.5V$
- $\lambda_{\text{max}} \approx 400 \text{ nm}$, PDE_{max} $\approx 38\%$
- Sensor geom. fill factor ≈ 88%

Radiator

- 4-layer focusing aerogel
- $n_{max} = 1.05$
- 35 mm thickness

PD-Radiator distance: 200 mm

Event reconstruction using

geometric approach

Accumulated hit map P = 2.4 GeV/c, $\theta_p = 45^\circ$

 θ_c , ϕ_c – photon angles in the nominal point of origin w.r.t. particle direction

Fit analytical formula to (θ_c, ϕ_c) distribution and obtain β

Simulated $N_{p.e.}$ and β resolution

 θ – particle angle w.r.t. beam line

Simulated μ/π separation power

 θ – particle angle w.r.t. beam line

Event reconstruction using Neural Networks

Motivation

- Alternating approach to event reconstruction with a potential to include all observed data without knowing PDFs → flexibility
- More straightforward and attractive for developer

Implementation (started in Fall 2020)

- Python with Pandas, Tensorflow packages
- Geometrical reconstruction of hit θ_c , ϕ_c , then NN training
- Obtain particle's β from a single NN output

hidden layer 1 hidden layer 2 hidden layer n

neural network

Preliminary results of NN event reconstruction

Plans on MC simulation

- Response parameterization for fast simulation
 Q2 2021
- NN reconstruction implementation Q2 2021
- Full simulation in Aurora with optical photons
 - second half of 2021

Test beam of electrons: Infrastructure

Example disposition of equipment in experimental hall (15/03/2018)

FARICH3 prototype (2019)

- 4 H12700 MaPMT: 8x8 anodes □6 mm Optional 1mm-hole mask on MaPMTs
- 2 ONSEMI ArrayJ-30035-16P-PCB SiPM arrays: 4x4 pixels □3 mm

Readout electronics

DIRICH & PADIWA & TRB3 (GSI)

MCP detector for the time reference

Radiator

Several aerogel samples at 200mm distance from PD

Flat mirror was used to reflect light on PD and keep sensors from away from the beam line

Beam test of FARICH prototype with op430f61 aerogel sample

2019 beam test results and comparison with MC

PD pixel size	σ_R (MC) [mm]	σ_R (EXP) [mm]			
H12700 Ø1 mm	1.98	1.97±0.04			
SiPM 3×3 mm ²	2.18	2.16±0.04			

JINST **15** (2020) C10014

New multilayer aerogels

	MC sim results								
1.1	nul		×10 ³					ht	
1.09	Entries Mean x	0	E	Γ			Entries	1502796	
E	Mean y Std Dev x	0	1200				Mean	0.7019	
1.08	Std Dev y	ŏ	F				Std Dev	0.01325	
1.07			1000						
1.06			800 E						
1.05			F						
1.04			600						
F			ŧ						
1.03			400						
1.02			200						
1.01			±°°E						
بق.	5 10 15 20 25 30 35	40	0 0.64	0.66 0.68	0.7 0.72 0	0.74 0.76	0.78 0.8	_	
0	3 10 13 20 23 30 33 -	40	0.04	0.00	0.7 0.72	0.70	0.70 0.0		
	hits pos_chip_0:hits pos_chip_1 (hits.time<0.70851480960845947 && hits.time>0.68526135921478271)								
9 F		7	F	Entrie	hrad	1357251		٦	
hits.pos_chip.		1800	35000	Mean		55.95	Λ		
8	The second secon	1600	30000	Std D χ² / n		1.701 5712 / 98	Λ		
all 40E		1400	E	p0	3.575e+04 ±	3.810e+01	11		
20		1200	25000	p1 p2		.99 ± 0.00 13 ± 0.001	П		
Ē			20000	pε	1.5	10 2 0.001	11		
٥F		1000	E				11		

Aerogel	PD pixel size	σ_R (MC) [mm]
op451	SiPM 3×3 mm ²	1.55
Ideal 4-layer		1.45

Beam tests of newly produced aerogels are planned for Q1-2 of 2021

Full-scale FARICH prototype

Full-scale prototype will detect full Cherenkov rings with SiPM arrays & compact readout FEE.

- photon detector size ≈21×21 cm²
- $64 \times (8 \times 8) = 4096$ pixels of 3×3 mm²
- aerogels up to 20×20 cm² size
- aerogel isolated from environment
- folding envelope enabling focal distance adjustments
- liquid cooling system to operate at -30°C (≤ 5%X₀)

Full-scale prototype should be ready for test beam in 2022 well ahead of MS5.6 due date (M42)

R&D of front-end electronics for

FARICH

Objectives:

- High-density electronics with footprint of 3.4x3.4 mm per channel
- Fit SiPMs + FEE into ~5 cm radial space in barrel
- Power consumption as low as possible with a goal of 10-20 mW/ch
- TDC with ~100 ps timing resolution & coarse amplitude measurement (ToT)
- Possibility to cool down to -40°C

Very challenging project!

Status & plans:

- R&D has been started by GSI digital electronics group (M. Traxler) in 2020
- Concept: FPGA-based TDC (TRB3 platform)
- Layouts of 3 of 5 boards are ready
- Production will start in Spring 2021

FARICH FEE module for 3x2 KETEK SiPM arrays

FARICH simulation and prototyping

First version of FEE board layouts

Amplifier board

- 27×27 mm² size
- 14-layer PCB
- 30x gain, 64 channels
- couples to KETEK 8×8 SiPM array

TDC board

- 64 channels
- 2 TDC + 4 threshold FPGAs
- 10ps precision

Simulated single photon pulse shapes from amplifier for different input resistance. ~ 22mV amplitude can be achieved.

FARICH simulation and prototyping

DC-DC convertor board

- goes behind the backplane
- 51×84 mm² size
- provides power to SiPMs, amplifiers, FPGA
- uses air inductive coils to operate in the detector magnetic field
- power, trigger & clock connectors

R&D towards high refractive index aerogel

- RI n=1.05 results in quite high momentum threshold $P_{\pi} \approx 450 \text{ MeV/}c$
- Usually, the higher RI, the lower transparency of aerogel
- Two approaches to increase RI are being developed in Novosibirsk

Doping with Dimethylformamide (DMF) ZrO₂ doping (CH₃)₂NC(O)HBoreskov Institute of Catalysis Aerogel Aerogel Refractive index 1.06 Borr Sov Institute of Cataly's Aerogel 5% Dimethylformamide dope n=1.0517 From Kov Institute of Catalyous n=1.0498 1.045 The scattering length of aerogels with zirconium 1.04 1.035 Refractive index Thickness of aerogel block, mm $L_{sc}(400nm)$ \mathbf{n}_{max} 1.02 **Ordinary** 1.0498 $32 \pm 0.5 \, \text{mm}$ 1.06 1.07 1.11 Density, g/cm3 Successful production of small aerogel samples with n≤1.12 +5% DMF 1.0546 $40 \pm 0.5 \, \text{mm}$

and L_{sc}(400nm)≥30mm by doping with 3-6% ZrO₂

simul

Summary

- FARICH PID performance is studied with Geant4 simulation using different event reconstruction techniques. μ/π separation is achievable up to P=1.6GeV/c at the level of 3 s.d.
- Several FARICH prototypes have been tested since 2011 at the BINP electron beam. Latest beam test was in 2019. Next ones are planned in Q1-2 2021. Full-scale FARICH prototype will be ready for test in 2022. Beam test results and publication by M42 (July 2023).
- Experimental single photon resolution for FARICH prototypes for normal incidence relativistic electrons agrees with simulation. There is a space for the focusing aerogel improvement.
- Compact front-end electronics for FARICH readout is being developed at GSI. First iteration will tentatively be ready by mid-2021.
- Initial R&D results towards denser transparent aerogel are presented.