WSSy
< &
O\
N
@

S
A M
Wosibirse *

Mitigation of Drift Instabilities
by a Small Radial Flux of Charged Particles

through the Landau-Resonant Layer
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OUTLINE

Flux-driven algebraic damping of ExB drift (diocotron) modes
(a close cousin, but distinct from, spatial Landau damping)

Ion-induced instabilities of diocotron modes 1n electron plasmas
(similar to a curvature-driven flute instability in (quasi)neutral plasmas)

Flux-driven mitigation of the 1on-induced diocotron instabilities
(controlled small losses to prevent a major disruption)
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Nonneutral plasmas are confined
by static electric and magnetic fields
in a Penning-Malmberg trap
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central density: n,~1.5x10” cm
central potential: g.~—30V
plasma core radius: R.=12cm (R,=3.5cm)
equilibrium temperature: 7> .03 eV (Ap= R_./30)
magnetic field: B <20kG
ExB rotation frequency: f.. =~ 10 kHz (20kG/B)
neutral pressure: P ~ 101! Torr
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Pure electron plasma is contained in (up to) ten electrically isolated cylinders, with the cylinders S4 and S7
divided into up to 8 azimuthal sectors to excite, manipulate and detect various m, # 0 modes. Axial plasma
confinement is provided by -100 V on the end cylinders. Radial confinement is provided by the axial
magnetic field B. Plasma density z-integrated 2D-distribution n(r, 8) is measured by instantaneous
grounding the end cylinder, thereby allowing the plasma to stream onto a phosphor screen with attached

CCD camera.
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Diocotron Waves

Diocotron waves are flutelike (m, # 0,k. = 0) surface density perturbations,
which are neutrally stable (, = 0) for an i1dealized "top-hat" profile n,(7)
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(Spatial) Landau Damping of Diocotron Modes

Landau damping 1s the phase mixing of density perturbations near the

resonant radius 7, (m1,), where the fluid rotation rate wg, g(#,,,)

equals the wave phase rotation rate w,, /m,

m
W r =w, /m r. (m,)= R
EXB( res) m 0 res( (9) C\/m_1+(RC/RW)2m
no damping for a exponential Landau damping
A “top-hat” n(r) profile A for a diffused n(r) profile
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Frequency f,(?) of the m, =1 diocotron mode is naturally sensitive
to time variations in plasma radius R(7) and temperature 7(7) as
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Since Af; /f; can be measured with a great precision (<10
for a steady-state and small amplitude D-waves,

1.e., when AD-D < A—fl,

R, /i
then the m, =1 diocotron frequency monitoring
is a powerful diagnostic tool !
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Monitoring of the m, =1 diocotron frequency as a diagnostic tool
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I. fast relaxation of f[v], ionization
II. cyclotron cooling, 7(¢) = T,

/ III. low density halo expansion, R(¢)
IV. touching and losses to the wall, /' 1
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As the plasma core radiatively cools down to the room temperature,
a low-density halo (n, ~ .01n ) starts to leak out of the core,
expanding slowly (~ 50s) to the wall
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Cross Section of an Electron Plasma Column in Diocotron Perturbation D,

resonant particles (r < R,) form
a dipole field 6E, that causes resonant particles (r,=A <r <rytA)
the core to ExB drift back to the axis form a quadrupole flux asymmetry
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Flux-Driven Algebraic Damping of the m, =1 and m, =2 Diocotron Modes
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Double-Well (Nested) Traps

Double-well traps can be used to confine particles with opposite signs

+50V -20V oV 20V +50V

(p(Z) Electrons or anlierons

lons or positrons

s there a problem with Ex® drifts stability ?
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Schematic of the e + H, experiment
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FIGURE 1. Cylindrical Penning-Malmberg trap and imaging diagnostics. with potential profiles for
two configurations: a double-well configuration with axially frapped ions (solid): and a single-well
configuration with fransient ions (dashed).
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Schematic of Double-Well (Nested) Trap Experiments

In a double-well trap the bounce-averaged ExB drift rotation is different Le <53 cm
for ions and electrons. This leads to charge separation in a diocotron L .>14 cm
density perturbation on, (r, 0) and to instability of the mode end =
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Trapped (Multi-Pass)Ions

Schematic of Ion ExB Drift Trajectories in the Diocotron Mode Frame

Symmetry dictates that the bounce-average motion of trapped 1ons is well represented

by the motion of an 10n set initially at the center of elecron column.

Here, a single end run phase shift ¢, =277z, , f. , # of such runs for a diocotron cycle is 1/(z,, 1, ),

an the average phase acquired during a diocotron cycle ¢ =277, /7, ,
7, 1s an average 1on lifetime inside the electron column, ( f, 7, gives the average number of d-cycles)

Af,, =(N,/N,) f,, is the net change of mode frequency f,, due to the fractional neutraliztion.
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Ion-Induced m, =1 Diocotron Instability as Function of the Background Pressure
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Flux-Driven Mitigation of the m, =1 Diocotron Instability
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Flux-Driven Mitigation of the m, =1 Diocotron Instability

d(t) evolutions near

mitigation threshold
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¢ Adding even a tiny fraction of positive ions to electron plasmas
gives rise to the (ExB drift) diocotron instabilities
analogous to
the flute instabilities 1in cylindrical (quasi)neutral plasmas

*¢* Small flux of electrons through the wave-particle resonant layer
leads to an algebraic damping of the corresponding wave

*¢* Instabilities of drift modes are well controllable
if one knows what to trade-off
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