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OUTLINE

Flux-driven algebraic damping of E××××B drift (diocotron) modes
(a close cousin, but distinct from, spatial Landau damping)

Ion-induced instabilities of diocotron modes in electron plasmas
(similar to a curvature-driven flute instability in (quasi)neutral plasmas)

Flux-driven mitigation of the ion-induced diocotron instabilities
(controlled small losses to prevent a major disruption)
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Nonneutral plasmas are confined

by static electric and magnetic fields

in a Penning-Malmberg trap
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Cylindrical symmetry, single sign species => long confinement time
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G1                 L2               H3     S4          G5     H6      S7         G8     H9    G10

central density:                nc≈ 1.5×107 cm-3

central potential:           φc ≈ – 30 V

plasma core radius:          Rc ≈ 1.2 cm  (Rw = 3.5 cm) 

equilibrium temperature:  T ≥ .03 eV  (λD ≈ Rc /30)

magnetic field:                  B ≤ 20 kG

E××××B rotation frequency: fE×B ≈ 10 kHz (20kG/B)

neutral pressure:                P ≈ 10-11 Torr

Pure electron plasma is contained in (up to) ten electrically isolated cylinders, with the cylinders S4 and S7 

divided into up to 8 azimuthal sectors to excite, manipulate and detect various mθ ≠ 0 modes.  Axial plasma 

confinement is provided by -100 V on the end cylinders.  Radial confinement is provided by the axial 

magnetic field  B.   Plasma density z-integrated 2D-distribution n(r, θ ) is measured by instantaneous 

grounding the end cylinder,  thereby allowing the plasma to stream onto a phosphor screen with attached 

CCD camera.
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Diocotron  Waves

Diocotron waves are flutelike  surface density perturbations,
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(Spatial) Landau Damping of Diocotron Modes

wE××××B(rres) = wm /mq

no damping for a exponential Landau damping

Landau damping is the phase mixing of density perturbations near the 

resonant radius rres(mq), where the fluid rotation rate wE××××B(rres)

equals the wave phase rotation rate wm /mq
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Frequency f1(t) of the mθ = 1 diocotron mode is naturally sensitive

to time variations in plasma radius R(t) and temperature T(t) as
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Since ∆∆∆∆f1 /f1 can be measured with a great precision (≤≤≤≤10-4)
for a steady-state and small amplitude D-waves,

then the mθ = 1 diocotron frequency monitoring

is a powerful diagnostic tool !
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Monitoring of the mθ = 1 diocotron frequency as a diagnostic tool

I. fast relaxation of f [υ], ionization

II. cyclotron cooling, T(t) → Twall

III. low density halo expansion, R(t)

IV. touching and losses to the wall, F
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As the plasma core radiatively cools down to the room temperature,

a low-density halo (nh ∼∼∼∼ .01nc) starts to leak out of the core,
expanding slowly (∼∼∼∼ 50s) to the wall
Rcore
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Cross Section of an Electron Plasma Column in Diocotron Perturbation Dm

Flux

mθ = 2 mθ = 1 

rEδ
δ
←
↓
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r2

r1 =Rw

r2 ≈1.4Rc

r

Eθδ
←
↓

resonant particles (r ≤ Rw)  form

a dipole field δδδδEq that causes

the core to E×B drift back to the axis

resonant particles (r2−D ≤ r ≤ r2+D )

form a quadrupole flux asymmetry
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Flux-Driven Algebraic Damping of the mθ = 1 and mθ = 2 Diocotron Modes
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Double-Well (Nested) Traps

Double-well traps can be used to confine particles with opposite signs

+50 V  -20 V           0 V             -20 V   +50 V
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ϕ(z)

Is there a problem with Is there a problem with Is there a problem with Is there a problem with EEEE××××B drifts stability B drifts stability B drifts stability B drifts stability ????



2Schematic of the  H   experimente− ++
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Schematic of Double-Well (Nested) Trap Experiments

H2
+

æ

E(r, z)×B

Le ≤ 53 cm

Lend ≥ 14 cm

Rw = 3.5 cm

In a double-well trap the bounce-averaged E×B drift rotation is different

for ions and electrons. This leads to charge separation in a diocotron

density perturbation dnm(r, q) and to instability of the mode
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Schematic of Ion E×B Drift Trajectories in the Diocotron Mode Frame

Symmetry dictates that the bounce-average motion of trapped ions is well represented

by the motion of an ion set initially at the center of elecron column.  

Here, a single end run phase shift 2se enϕ πτ= ,  # of such runs for a diocotron cycle is 1 ( ),

an the average phase acquired during a diocotron cycle 2 ,
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Ion-Induced mθ = 1 Diocotron Instability as Function of the Background Pressure
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Flux-Driven Mitigation of the mθ = 1 Diocotron Instability
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Flux-Driven Mitigation of the mθ = 1 Diocotron Instability
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TAKE-HOME  MESSAGE

� Adding even a tiny fraction of positive ions to electron plasmas

gives rise to the (E××××B drift) diocotron instabilities

analogous to

the flute instabilities in cylindrical (quasi)neutral plasmas

�� Small flux of electrons through the wave-particle resonant layer

leads to an algebraic damping of the corresponding wave

� Instabilities of drift modes are well controllable

if one knows what to trade-off
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